
The 14
th

 Summer School 

,  

, 

               
and APPLICATIONS 

 

August 10 – August 20, 2019 

Pidzakharychi, Chernivtsi Region, 

Ukraine 

B o o k   o f    A b s t r a c t s 



Contents

Banakh T. Duality between coarse and uniform spaces via func-
tion algebras and group actions 5

Bardyla S. Cardinal characteristics of the lattice of shift-continuous
topologies on the bicyclic monoid with an adjoined zero 6

Gavinsky D. Communication complexity for mathematicians 7

Gavrylkiv V. On superextensions of semigroups and their auto-
morphism groups 8

Guale A., Vielma J. The algebraic face of the Collatz conjecture 12

Hihliuk A., Zagorodnyuk A. An algerba of uniformly contin-
uous analytic functions on balls of fixed radius 14

Hryniv O., Prytula Ya. Students’ scientific activity at math-
ematical seminars and at the Student Scientific Society at the
Lwów University (1894 – 1939) 15

Karlova O. Strongly separately continuous function and Borel
subsets of ℓp 16

Karpenko I., Shepelsky D. A Riemann-Hilbert problem ap-
proach to the modified Camassa-Holm equation on a nonzero
background 18

Krupski M. Hereditarily Baire Hyperspaces 20

Lyubashenko V. Cauchy completeness for metric spaces and en-
riched categories 21

Maksymenko S. Introduction to homotopy theory 22

Markitan V. Self-similar singular function defined by double
stochastic matrices 23

3



Mazurenko N., Zarichnyi M. On invariant closed convex sets
of probability measures 26

Mykhaylyuk V. Compactness and completeness in partial metric
spaces 28

Nguyen Thu Hien, Vishnyakova A. On the conditions for
some entire functions to have only real zeros 31

Ravsky A. A note on compact-like semitopological groups 33

Sukhorukova K. Categorical properties of functionals generated
by the triangular norms 34

Wojciechowski M. Application of absolutely summing operators
to isomorphic classification of Banach spaces of differentiable
functions 36

Zavarzina O. Non-expansive bijections between unit balls of Ba-
nach spaces and related problems 37

Zdomskyy L. On first countable T1 Lindelöf spaces 38
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Duality between coarse and uniform spaces via function
algebras and group actions

Taras Banakh

Jan Kochanowski University in Kielce, Poland
and

Ivan Franko National University of Lviv, Ukraine

We establish the functorial duality between four categories: of
coarse spaces, of group acts, of topologically discrete totally bounded
uniform spaces, and of compact Hausdorff spaces with dense set of
isolated points. Using these dualities we shall prove that any compact
Hausdorff space X with sequential square and dense set X ′ of isolated
point is equal to the Higson compactification of X ′ endowed with a
finitary coarse structure generated by the group Homeo(X,X ′) of
homeomorphisms of X that do not move points of the set X \ X ′.
Consequently, each compact metrizable space is homeomorphic to the
Higson corona of some finitary coarse space.

e-mail: t.o.banakh@gmail.com
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Cardinal characteristics of the lattice of
shift-continuous topologies on the bicyclic monoid

with an adjoined zero
Serhii Bardyla

University of Vienna, KGRC, Austria

We investigate the upper semilattice IST lc of Hausdorff inverse
semigroup topologies on the bicyclic semigroup with an adjoined zero
which induce a locally compact topology on E(C0). We give a power-
ful method of constructing inverse semigroups topologies on C0 using
subfamilies of ωZ which satisfy certain conditions. It was proved that
there exists the coarsest inverse semigroup topology and the finest
non-discrete inverse semigroup topology on C0. We show that IST lc

contains a well-ordered chain of cardinality b and an antichain of car-
dinality c.

A Hausdorff topology τ on the bicyclic monoid C0 is called weak
if it is contained in the coarsest inverse semigroup topology on C0.
We introduce a notion of a shift-stable filter on ω and show that the
lattice W of all weak shift-continuous topologies on C0 is isomorphic
to the lattice SS1×SS1 where SS1 is the set of all shift-stable filters
on ω with an attached element 1 endowed with the following partial
order: F ≤ G iff G = 1 or F ⊂ G. Also, we investigate cardinal
characteristics of the lattice W. In particular, we proved that the
lattice W contains an antichain of cardinality 2c and a well-ordered
chain of cardinality t.

The work of the author was supported by
the Austrian Science Fund FWF (Grant I 3709 N35).

e-mail: sbardyla@yahoo.com
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Communication complexity for mathematicians
Dmitry Gavinsky

Institute of Mathematics of the Academy of Sciences
of Czech Republic

Communication complexity is one of the most interesting – that
is, one of the strongest – computational models where meaningful
mathematical analysis currently exists.

The aim of our presentation will be to start from the definitions,
go through several known examples of exponential advantage of quan-
tum over classical communication, and touch upon a few of the most
important open questions in the area.

e-mail: dmitry.gavinsky@gmail.com
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On superextensions of semigroups and their automorphism
groups

Volodymyr Gavrylkiv

Vasyl Stefanyk Precarpathian National University, Ukraine

A family M of non-empty subsets of a set X is called an upfamily
if for each set A ∈ M any subset B ⊃ A of X belongs to M. By
υ(X) we denote the set of all upfamilies on a set X. Each family
B of non-empty subsets of X generates the upfamily ⟨B⟩ = {A ⊂
X : ∃B ∈ B (B ⊂ A)}. An upfamily F that is closed under taking
finite intersections is called a filter. A filter U is called an ultrafilter
if U = F for any filter F containing U . The family β(X) of all
ultrafilters on a set X is called the Stone-Čech compactification of X,
see [14]. An ultrafilter ⟨{x}⟩, generated by a singleton {x}, x ∈ X,
is called principal. Each point x ∈ X is identified with the principal
ultrafilter ⟨{x}⟩ generated by the singleton {x}, and hence we can
consider X ⊂ β(X) ⊂ υ(X). It was shown in [8] that any associative
binary operation ∗ : S × S → S can be extended to an associative
binary operation ∗ : υ(S) × υ(S) → υ(S) by the formula

L ∗M =
⟨

∪

a∈L

a ∗Ma : L ∈ L, {Ma}a∈L ⊂ M
⟩

for upfamilies L,M ∈ υ(S). In this case the Stone-Čech compactifi-
cation β(S) is a subsemigroup of the semigroup υ(S). The semigroup
υ(S) contains as subsemigroups many other important extensions of
S. In particular, it contains the semigroup λ(S) of maximal linked up-
families. An upfamily L of subsets of S is said to be linked if A∩B ̸= ∅
for all A,B ∈ L. A linked upfamily M of subsets of S is maximal
linked if M coincides with each linked upfamily L on S that contains
M. It follows that β(S) is a subsemigroup of λ(S). The space λ(S) is
well-known in General and Categorial Topology as the superextension
of S, see [16].

Given a semigroup S we shall discuss the algebraic structure of
the automorphism group Aut(λ(S)) of the superextension λ(S) of S.
We show that any automorphism of a semigroup S can be extended to
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an automorphism of its superextension λ(S), and the automorphism
group Aut(λ(S)) of the superextension λ(S) of a semigroup S contains
a subgroup, isomorphic to the group Aut(S).

Proposition 1. For any group G, each automorphism of λ(G) is an
extension of an automorphism of G.

Theorem 1. Two groups are isomorphic if and only if their superex-
tensions are isomorphic.

A semigroup S is called monogenic if it is generated by some ele-
ment a ∈ S in the sense that S = {an}n∈N. If a monogenic semigroup
is infinite, then it is isomorphic to the additive semigroup N of posi-
tive integer numbers. A finite monogenic semigroup S = ⟨a⟩ also has
simple structure. There are positive integer numbers r and m called
the index and the period of S such that

• S = {a, a2, . . . , ar+m−1} and r +m− 1 = |S|;

• ar+m = ar;

• Cm := {ar, ar+1, . . . , ar+m−1} is a cyclic and maximal subgroup
of S with the neutral element e = an ∈ Cm and generator an+1,
where n ∈ (m · N) ∩ {r, . . . , r +m− 1}.

By Mr,m we denote a finite monogenic semigroup of index r and period
m.

Theorem 2. Two finite monogenic semigroups are isomorphic if and
only if their superextensions are isomorphic.

Proposition 2. If r ≥ 3, then any automorphism ψ of the semigroup
λ(Mr,m) has ψ(x) = x for all x ∈ Mr,m.

For the idempotent e of the maximal subgroup Cm of a semigroup
Mr,m the shift ρ : Mr,m → eMr,m = Cm, ρ : x 7→ ex, is a homomorphic
retraction of Mr,m onto Cm. Therefore, ρ̄ = λρ : λ(Mr,m) → λ(Cm) ⊂
λ(Mr,m) is a homomorphic retraction as well.

Theorem 3. For r = 2 the homomorphic retraction ρ̄ : λ(Mr,m) →
λ(Cm) has the following properties:

9



1. A ∗ B = ρ̄(A) ∗ B = A ∗ ρ̄(B) = ρ̄(A) ∗ ρ̄(B) for any A,B ∈
λ(Mr,m);

2. ψ(x) = x for any x ∈ Cm and any ψ ∈ Aut(λ(Mr,m));

3. the restriction operator R : Aut(λ(Mr,m)) → Aut(λ(Cm)) has
kernel isomorphic to

∏

L∈λ(Cm) Sρ̄−1(L)\{L} and the range

R(Aut(Mr,m)) = {φ ∈ Aut(λ(Cm)) : ∀L ∈ λ(Cm) |ρ̄−1(φ(L))| =

= |ρ̄−1(L)|}.

Consider the shift σ : Mr,m → aMr,m, σ : x 7→ ax.

Theorem 4. Assume that r ≥ 2. The restriction operator R :
Aut(λ(Mr,m)) → Aut(λ(M·2

r,m)) has kernel isomorphic to

∏

L∈λ(M·2
r,m)

Sσ̄−1(L)\λ(M·2
r,m)

and range R(Aut(Mr,m)) ⊂ H where

H =
{

φ ∈ Aut(λ(M·2
r,m)) : ∀L ∈ λ(M·2

r,m)φ(σ̄−1(L) ∩ λ(M·2
r,m)) =

= σ̄−1(L) ∩ λ(M·2
r,m) and ∀C ∈ Ξλ(Mr,m) |σ̄

−1(φ(L)) ∩ C| =

= |σ̄−1(L) ∩ C|
}

.
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The algebraic face of the Collatz conjecture
Angel Guale1 and Jorge Vielma2

1 ESPOL Polytechnic University, Escuela Superior Politécnica del
Litoral

2 ESPOL, Facultad de Ciencias Naturales y Matemáticas

The 3n + 1 problem, also known as the Collatz conjecture, the
Syracuse problem, is a conjecture in number theory stablished in 1937
by Lothar Collatz and can be stated as follows: If f : N → N is the
function define by:

f(n) =

{

n/2, n is even
3n+ 1, n is odd,

then given n ∈ N, there exists k > 0 such that f (k)(n) = 1 and the
only orbit is {1, 2, 4}. In the sequel, this function will be called the
Collatz function.

In this work we give an algebraic approach to this problem. In
fact we prove that the conjecture is true if and only if the semiring τf
has a unique maximal ideal, τf being the topology on N given by the
open sets as those subset θ of N such that f−1(θ) ⊂ θ, where f is the
Collatz function.
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An algerba of uniformly continuous analytic functions
on balls of fixed radius

Anna Hihliuk and Andriy Zagorodnyuk

Vasyl Stefanyk Precarpathian National University, Ukraine

Let X be a separable complex Banach space and G be a count-
able dense subset of X. Let P (X) denote the space of all continuous
homogeneous polynomials endowed with the norm

∥P∥z = sup
∥x−z∥≤1

|P (x)|

for all z ∈ G.
The metric generated by the countable system of norms is given

by

ρ(x, y) =
∞
∑

n=1

∥x− y∥z
2n(1 + ∥x− y∥z)

. (1)

We will consider a completion of the space P (X) and denote it by
HUG(X). Then HUG(X) becomes a Frechet algebra.

Theorem 1. Let X be a separable complex Banach space and G be a
countable dense subset of X. Let the alebra HUG(X) be a completion
of the space P (X) endowed with metric (1). Then a function f ∈
HUG(X) if and only if f is a analytic function, which is uniformly
continuous on every unit ball centered at z ∈ G.

References

[1] R.M. Aron, B.J. Cole and T.W. Gamelin, Spectra of algebras of analytic
functions on a Banach space, J. Reine Angew. Math. 415 (1991), 51–93.

[2] A. Zagorodnyuk, Spectra of algebras of entire functions on Banach
spaces, Proc. Amer. Math. Soc. 134 (2006), 2559–2569.

[3] O.I. Fedak, A.V. Zagorodnyuk, Strictly diagonal holomorphic functions
on Banach spaces, Corpathian Math. Publ., 7 (2) (2015), 254–258.

e-mail: hihliuk.anna@gmail.com
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Students’ scientific activity at mathematical seminars
and at the Student Scientific Society at the Lwów

University (1894 – 1939)
Olena Hryniv and Yaroslav Prytula

Ivan Franko National University of Lviv, Ukraine

The mathematical seminar, which was organized in 1893 by Józef
Puzyna, and the student physical-mathematical society began to form
traditions of Lwów Mathematical School.

In our talk we will discuss the themes of works written by the
members of the seminar and the student physical-mathematical soci-
ety. The biographies of members of the seminars will be described as
well.

e-mail: ohryniv@gmail.com, ya.g.prytula@gmail.com
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Strongly separately continuous functions
and Borel subsets of ℓp

Olena Karlova

Jan Kochanowski University in Kielce, Poland
and Yurij Fedkovych Chernivtsi National University, Ukraine

A notion of strongly separately continuous function of n real vari-
ables was introduced by Dzagnidze in [2] and studied in many papers
(see [1, 3] and the literature given there).

Let XT =
∏

t∈T Xt be a product of family of sets Xt with |Xt| > 1
for all t ∈ T . If S ⊆ S1 ⊆ T , a = (at)t∈T is a point of XT and
x = (xt)t∈S1

∈
∏

t∈S1
Xt, then xaS means a point (yt)t∈T such that

yt =

{

xt, t ∈ S,
at, t ∈ T \ S.

In the case S = {s} we will write xas instead of xa{s}.
We say that a subset A ⊆ XT is S -open if

{y = (yt)t∈T ∈ XT : |{t ∈ T : yt ̸= xt}| ≤ 1} ⊆ A

for all x = (xt)t∈T ∈ A.
Let X ⊆ XT be an S -open set, T be a topology on X and (Y, d)

be a metric space. A function f : (X,T ) → Y is called strongly
separately continuous on X or an ssc-function if

lim
x→a

d(f(x), f(axt )) = 0

for every a ∈ X and t ∈ T .
In our presentation we will study the discontinuity points set of

ssc-functions and connection of ssc-functions with the box-topology
of infinite products. Moreover, the problem of Baire classification of
strongly separately continuous functions will lead us to a construction
of an S -open subset of ℓp which belongs to the α’th additive Borel
class and does not belong to the α’th multiplicative Borel class.
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A Riemann-Hilbert problem approach to the modified
Camassa-Holm equation on a nonzero background

Iryna Karpenko and Dmitry Shepelsky

B.Verkin Institute for Low Temperature Physics and Engineering of
the National Academy of Sciences of Ukraine

The modified Camassa–Holm equation has the following form:

mt +
(

(u2 − u2x)m
)

x
= 0, m = u− uxx. (1)

In an equivalent form, this equation was given by Fokas in [1] (see
also [4] and [3]) and has attracted considerable interest since it was re-
derived by Qiao [2]. So it is sometimes referred to as the Fokas-Olver-
Rosenau-Qiao equation. Equation (1) has a bi-Hamiltonian structure
[4] and possesses a Lax pair [2].

We consider the initial value problem for the mCH equation (1):

mt +
(

(u2 − u2x)m
)

x
= 0, m = u− uxx, t > 0,−∞ < x < +∞,

(2)

u(x, 0) = u0(x), −∞ < x < +∞,
(3)

assuming that u0(x) → 1 as |x| → ∞, and we search for the solution
that preserves this behavior: u(x, t) → 1 as |x| → ∞ for all t > 0.

We present the inverse scattering transform (IST) approach for the
mCH equation using the formalism of 2 × 2 matrix Riemann–Hilbert
problems formulated in the complex plane of the spectral parame-
ter (cf. [5]). This approach is applied to the Lax pair of the mCH
equation:

{

Φx(x, t, λ) = U(x, t, λ)Φ(x, t, λ)

Φt(x, t, λ) = V (x, t, λ)Φ(x, t, λ)
,

where

A = λ−2 +
(u2 − u2x + 2u)

2
,
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B = −λ−1(u− ux + 1) −
λ(u2 − u2x + 2u)m

2
,

C = λ−1(u+ ux + 1) +
λ(u2 − u2x + 2u)m

2
,

U =

(

−1
2

λm
2

−λm
2

1
2

)

,

V =

(

A B
C −A

)

.

We construct a parametric representation of the smooth solution
of problem (2)-(3) in terms of the solution of an associated Riemann–
Hilbert problem, which can be efficiently used for further studying the
properties of the solution. Particularly, using the proposed formalism,
we describe regular as well as non-regular (cuspon and loop-shaped)
one-soliton solutions [6] corresponding to the Riemann–Hilbert prob-
lems with trivial jump conditions and appropriately chosen residue
conditions.
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Hereditarily Baire Hyperspaces
Miko laj Krupski

Warsaw University, Poland

A topological space X is Baire if the intersection of a countable
family of open dense sets in X is dense. We say that X is hereditarily
Baire if every closed subspace of X is Baire.

In this series of talks, I will focus on the following problem: Let
X be a separable metric space. When the hyperspace K(X) of all
nonempty compact subsets of X endowed with the Vietoris topology
is hereditarily Baire? A satisfactory answer to the above question
was recently given by Gartside, Medini and Zdomskyy who observed
its connection with a property of the remainder of some (any) com-
pactification of X (the Menger property). I will show how topological
games can help to prove quite easily this theorem. Next, I will give
some applications of our techniques to spaces of probability measures
and filters on the naturals.

e-mail: mikolaj.krupski@gmail.com
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Cauchy completeness for metric spaces and enriched
categories

Volodymyr Lyubashenko

Institute of Mathematics of National Academy of Sciences, Ukraine

We introduce the notion of a category enriched in a monoidal cat-
egory [1] via the example of metric spaces. Generalized metric spaces
of Lawvere [2] are discussed in detail. For them Cauchy completeness
(in the sense of Lawvere [2]) is equivalent to the property that every
fundamental sequence converges to at least one point. For ordinary
categories (enriched in Set) Cauchy completeness is equivalent to the
property that every idempotent splits. Denote by Ab the monoidal
category of abelian groups. An Ab-category is Cauchy complete iff
it admits finite direct sums and every idempotent splits. Thus, the
notion of completeness relates analysis and algebra.
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Introduction to homotopy theory
Sergiy Maksymenko

Institute of Mathematics of National Academy of Sciences, Ukraine

The aim of these three lectures is to explain some basic homotopy
invariants of topological spaces and illustrate their computaions. We
will discuss the following topics:

1) Notion of homotopy. Homotopy equivalences and homotopy
type. Retracts and deformational retracts.

2) Fundamental group and higher homotopy groups of a topological
space.

3) Long exact sequence of homotopy groups of a pair of topological
spaces.

4) Serre fibrations. Long exact sequence of homotopy groups for
Serre fibrations.

5) Compact open topologies. Homotopies as paths in functional
spaces.

6) Space of paths and loop space. Relations between homotopy
groups of a space and its loop space.

7) Seifert - van Kampen theorem.

8) Gluing one space to another by a continuous map. CW-complexes.
Construction of a compact topological space with given finitely
presented fundamental group.

e-mail: maks@imath.kiev.ua

22



Self-similar singular function defined by double
stochastic matrices

Vita Markitan

National Pedagogical Dragomanov University, Ukraine

Let

1) 1 = 2
3+

∞
∑

n=1

1
(−2)n = 2

3−
1
2+ 1

22
− 1

23
+. . . be normalized alternating

binary series that defines a binary negapositional image of the
number of the segment [0; 1]:

x =
2

3
+
α1(x)

(−2)1
+
α2(x)

(−2)2
+
α3(x)

(−2)3
+ . . .+ ≡ ∆

2
α1(x)α2(x)...αn(x)...;

2) ∥pik∥ =

(

p00 p01
p10 p11

)

be a positive double stochastic matrix i.e.

pij > 0, pi0 + pi1 = 1, p0j + p1j = 1, i = 0, 1, j = 0, 1;

3) p = (p0; p1) be a vector p0 = p10
p01+p10

= 1
2 and p1 = p01

p01+p10
= 1

2 .

It is known that a binary negapositional number representation is
a recoding of a classical binary representation:

x = a1
2 + a2

22
+ . . .+ an

2n + . . . ≡ ∆2
a1(x)a2(x)...an(x)...

, an ∈ {0; 1}
Considered in the talk is function F , defined by equality

F (x) = F (∆
2
α1(x)α2(x)...αn(x)...) = (1)

= βα1(x) +
1

2

∞
∑

k=1

(β
(k)
αk(x)αk+1(x)

k−1
∏

i=1

pαi(x)αi+1(x)),

βα1(x) =

{

0, if α1(x) = 1,
1
2 , if α1(x) = 0,

β
(2n−1)
α2n−1(x)α2n(x)

= β
(1)
α2n−1(x)α2n(x)

=







0, if α2n(x) = 0,
p00, if α2n−1(x) ̸= α2n(x) = 1,
p10, if α2n−1(x) = α2n(x) = 1,
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β
(2n)
α2n(x)α2n+1(x)

= β
(0)
α2n(x)α2n+1(x)

=







0, if α2n+1(x) = 1,
p01, if α2n(x) = α2n+1(x) = 0,
p00, if α2n(x) ̸= α2n+1(x) = 0,

and αk(x) is k negapositional digit of representation of the number x.

Definition 1. Let (c1, c2, . . . , cm) be a orderly set of positive integers.

The Cylinder of m rank with basis c1c2 . . . cm is called a set ∆
2
c1c2...cm

of numbers of x ∈ (0; 1] that is first m negapositional digits of which
are c1, c2, . . . , cm respectively, i.e.

∆
2
c1c2...cm... =

{

x : x = ∆
2
c1c2...cmam+1am+2...

, am+i ∈ N, i = 1, 2, 3, . . .
}

.

Lemma 1. For a function F defined by the equality (1) the mapping

of the cylinder ∆
2
c1c2...cm

is a segment [a; b], where

a = βc1 +
1

2

m−1
∑

k=1



β(k)ckck+1

k−1
∏

j=1

qcjcj+1



 , b = a+
1

2

m−1
∏

j=1

qcjcj+1
,

Theorem 2. Images of different cylinders of the same rank with the
mapping F do not overlap and in the union give the whole segment
[0, 1].

Theorem 3. The function F (x) denoted by the equality (1) is:

1) correctly identified,

2) continuous,

3) strictly increasing,

4) linear for p00 = 0.5 and singular for p00 ̸= 0.5 (has a derivative
equal to zero almost everywhere in the sense of the Lebesgue
measure).

Lemma 4. The right-side shift operator δij(x) of ∆
2
-representation

of a number with parameters (i; j) denoted by an equality

δij(x) = δij(∆
2
α1(x)α2(x)...αn(x)...) = ∆

2
ijα1(x)α2(x)...αn(x)...,
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is given by the formula

δij(x) =
1 − i

2
+

j

22
+

1

22
x.

Theorem 5. The function F (x) satisfies the system of functional
equations:

F (δij(x)) =

=











































































































































F ( 1
4
x+ 1

3
) = 1

2
p201 −

1

2
p01p00 + p01p00F0(x), if x = ∆

2

0α2α3...
,

δij(x) = ∆
2

100α2α3...
,

F ( 1
4
x+ 1

2
) = 1

2
+ 1

2
p00p01 −

1

2
p200 + p200F0(x), if x = ∆

2

0α2α3...
,

δij(x) = ∆
2

000α2α3...
,

F ( 1
4
x+ 3

4
) = 1

2
+ 1

2
p00 +

1

2
p00p01 −

1

2
p201 + p201F0(x), if x = ∆

2

0α2α3...
,

δij(x) = ∆
2

010α2α3...
,

F ( 1
4
x+ 1

4
) = 1

2
p01 +

1

2
p200 −

1

2
p00p01 + p00p01F0(x), if x = ∆

2

0α2α3...
,

δij(x) = ∆
2

110α2α3...
,

F ( 1
4
x+ 1

2
) = 1

2
+ p00p01F1(x), if x = ∆

2

1α2α3...
,

δij(x) = ∆
2

001α2α3...
,

F ( 1
4
x+ 3

4
) = 1

2
+ 1

2
p00 + p00p01F1(x), if x = ∆

2

1α2α3...
,

δij(x) = ∆
2

011α2α3...
,

F ( 1
4
x) = p201F1(x), if x = ∆

2

1α2α3...
,

δij(x) = ∆
2

101α2α3...
,

F ( 1
4
x+ 1

4
) = 1

2
p01 + p200F1(x), if x = ∆

2

1α2α3...
,

δij(x) = ∆
2

111α2α3...
.

The report proposes the results of investigation of the above-
mentioned functions.

e-mail: v.p.markitan@npu.edu.ua
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On invariant closed convex sets of probability measures
Natalia Mazurenko1 and Mykhailo Zarichnyi2

1Vasyl Stefanyk Precarpatian National University, Ukraine,
2University of Rzeszów, Poland

By P (X) we denote the space of probability measures on a com-
pact Hausdorff space X, by exp(X) the hyperspace of X.

By ccP (X) we denote the hyperspace of closed convex subsets
of X. It is known that ccP is a functor on the category Comp of
compact Hausdorff spaces [5]. Moreover, ccP determines a monad
in the category Comp; we denote by θ = (θX) : (ccP )2 → ccP its
multiplication.

Now let (X, d) be a compact metric space. The Kantorovich metric
on the space of probability measures and the Hausdorff metric on the
corresponding hyperspace determine the metric on the space ccP ; we

denote it by d̃. The map θX : (ccPccP (X),
˜̃
d) → (ccP (X), d̃) is known

to be non-expanding [5].
Let {f1, f2, . . . , fn} be a finite family of contractions on X (that

is, an iterated function system, IFS). Let also B ∈ ccP ({1, 2, . . . , n}).
Define the map ΦB : ccP (X) → ccP (X) as follows. Let A ∈ ccP (X)
and let gA : {1, 2, . . . , n} → ccP (X) be the map sending i to ccP (fi)(A);
then let

ΦB(A) = θX(ccP (gA)(B)).

Theorem 1. For any IFS {f1, f2, . . . , fn} and B ∈ ccP ({1, 2, . . . , n})
there exists a unique invariant closed convex set of probability mea-
sures, i.e., there exists A ∈ ccP (X) such that A = ΦB(A).

A standard proof of this statement is based on the Banach Con-
traction Principle; another approach follows the line of the main result
of [4].

There exists an inhomogeneous counterpart of invariant closed set
of probability measures. Suppose that we have an IFS {f1, f2,. . . ,fn}
on X, B ∈ ccP ({0, 1, 2, . . . , n}) and C ∈ ccP (X). For any A ∈
ccP (X), let g′A,C : {0, 1, 2, . . . , n} → ccP (X) be defined by the for-
mula: g′A,C(0) = C, g′A,C(i) = ccP (fi)(A), i = 1, 2, . . . , n. Define
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Φ′
B,C : ccP (X) → ccP (X) by the formula

Φ′
B,C(A) = θX(ccP (g′A,C)(B)).

Theorem 2. For any IFS {f1, f2, . . . , fn}, B ∈ ccP ({0, 1, . . . , n})
and C ∈ ccP (X) there exists a unique A ∈ ccP (X) such that A =
Φ′
B,C(A).

The set A is called an inhomogeneous invariant convex set of prob-
ability measures.
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Compactness and completeness in partial metric spaces
Volodymyr Mykhaylyuk

Jan Kochanowski University in Kielce, Poland
and Yurij Fedkovych Chernivtsi National University, Ukraine

A function q : X2 → [0,+∞) is called a quasi-pseudometric on a
set X if for every x, y, z ∈ X the following conditions

(q1) q(x, x) = 0;

(q2) q(x, z) ≤ q(x, y) + q(y, z).

are true.
Let (X, q) be a quasi-pseudometric space. For every x ∈ X the

balls
Bq(x, ε) = {y ∈ X : q(x, y) < ε}, ε > 0

form a base of quasi-pseudometric topology at the point x.
A quasi-pseudometric q : X2 → [0,+∞) is called a quasi-metric

on X if x = y ⇔ q(x, y) = q(y, x) = 0 for every x, y ∈ X; and an
asymmetric metric on X if x = y ⇔ q(x, y) = 0 for every x, y ∈ X.

A function p : X2 → [0,+∞) is called a partial metric on X if for
every x, y, z ∈ X the following conditions

(p1) x = y ⇔ p(x, x) = p(x, y) = p(y, y);

(p2) p(x, x) ≤ p(x, y);

(p3) p(x, y) = p(y, x);

(p4) p(x, z) ≤ p(x, y) + p(y, z) − p(y, y).

are true.
For any partial metric p : X2 → [0,+∞) the function qp : X2 →

[0,+∞), qp(x, y) = p(x, y) − p(x, x), is a quasi-metric on X and the
topology of the partial metric space (X, p) is the topology of the quasi-
metric space (X, qp). Moreover, the function dp : X2 → [0,+∞),
dp(x, y) = 2p(x, y) − p(x, x) − p(y, y) is a metric on X.
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A quasi-pseudometric space (X, q) is called precompact if for every
ε > 0 there exists a finite set A ⊆ X such that X ⊆

∪

a∈A

Bq(a, ε).

A sequence (xn)∞n=1 in a quasi-pseudometric space (X, q) is said to
be left q-Cauchy if for each ε > 0 there is a point x ∈ X and an integer
k such that q(x, xm) < ε for all m ≥ k; and left K-Cauchy if for each
ε > 0 there is an integer k such that q(xn, xm) < ε for all m ≥ n ≥ k.
A pseudo-quasimetric space (X, q) is said to be left q-complete if every
left q-Cauchy sequence in X is convergent in X; and left K-complete
if every left K-Cauchy sequence in X is convergent in X.

A sequence (xn)∞n=1 in a partial metric space (X, p) is called Cauchy
if lim

m,n→∞
p(xn, xm) exists and is finite. A partial metric space (X, p)

is called complete if every Cauchy sequence (xn)∞n=1 in X converges
to a point x0 ∈ X such that lim

m,n→∞
p(xn, xm) = p(x0, x0).

Partial metrics p and r on a set X are called equivalent if the
topologies of the spaces (X, p) and (X, r) coincide.

Theorem 1. For any partial metric space (X, p) the following condi-
tions are equivalent:

(i) X is a countable compact space;

(ii) X is a sequentially compact space;

(iii) X is a compact space;

(iv) X is precompact and left qp-complete;

(v) X is precompact and left K-complete.

Example 2. There exists a Hausdorff compact partial metric space
(X, p) which is not complete.

Example 3. There exists a compact partial metric space (X, p) such
that the space (X, r) is not complete for any partial metric r which is
equivalent to p.

Example 4. There exists a partial metric space (X, p) such that

(1) (X, p) is completely regular, separable, perfect pseudocompact
space;
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(2) (X, p) is not compact, consequently it is not normal and para-
compact.

Example 5. Let X = {xn : n ∈ N} and p(xn, xm) = max{n,m} for
every n,m ∈ N. Then p is not equivalent to any bounded complete
partial metric on X.

Theorem 6. Let (X, p) be a complete partial metric space and D is
the set of discontinuity points set of the mapping f : (X, p) → R,
f(x) = p(x, x). If the set f(D) = {p(x, x) : x ∈ D} is bounded,
then there exists a bounded complete partial metric r on X which is
equivalent to p.

Question 1. Let (X, p) be a compact partial metric T1-space. Is there
an equivalent partial metric r on X such that (X, r) is complete?

Question 2. Is a complete partial T1-metric p on X equivalent to a
bounded complete partial metric on X?
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On the conditions for some entire functions to have only
real zeros

Thu Hien Nguyen and Anna Vishnyakova

Vasyl Karazin Kharkiv National University, Ukraine

Definition 1. A real entire function f is said to be in the Laguerre-
Pólya class, written f ∈ L − P, if it can be expressed in the form

f(x) = cxne−αx2+βx
∞
∏

k=1

(

1 −
x

xk

)

exx
−1

k , (1)

where c, α, β, xk ∈ R, xk ̸= 0, α ≥ 0, n is a nonnegative integer and
∑∞

k=1 x
−2
k < ∞. The product on the right-hand side can be finite or

empty.

The Laguerre-Pólya class was studied by many authors, and its
various significant properties and characterizations are mentioned in
[1], [4] and other works. Note that for a real entire function (not
identically zero) of order less than 2 having only real zeros is equivalent
to belonging to the Laguerre-Pólya class.

The partial theta-function, ga(z) =
∑∞

j=0
zj

aj
2 , a > 1, was studied

in [2] and [3]. It is proved in [2] that there exists a constant q∞, q∞ ≈
3.23363666..., such that the partial theta-function (and all its odd
Taylor sections) belongs to the Laguerre-Pólya class if and only if
a2 ≥ q∞.

We study the class of the entire functions with positive coeffi-
cients having monotonic second quotients of Taylor coefficients: qn =

qn(f) :=
a2n−1

an−2an
. We have obtained the sufficient and necessary con-

dition for these functions to belong to the Laguerre-Pólya class.

Theorem 1. (T. H. Nguyen, A. Vishnyakova, [5]). Let f(z) =
∑∞

k=0 akz
k, ak > 0 for all k, be an entire function. Suppose that

qn(f) are decreasing in n, i.e. q2 ≥ q3 ≥ q4 ≥ . . . , and lim
n→∞

qn(f) =

b ≥ q∞. Then all the zeros of f are real and negative, in other words
f ∈ L − P.
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Theorem 2. (T. H. Nguyen, A. Vishnyakova). Let f(z) =
∑∞

k=0 akz
k,

ak > 0, be an entire function. Suppose that the quotients qn(f) are
increasing in n, and lim

n→∞
qn(f) = c < q∞. Then the function f does

not belong to the Laguerre-Pólya class.

We also considered a special function

fa(z) =
∞
∑

k=0

zk

(a+ 1)(a2 + 1) . . . (ak + 1)
.

We discuss the necessary and the sufficient condition for it to belong
to the Laguerre-Pólya class.

Theorem 3. (T. H. Nguyen). The entire function

Fa(z) =
∞
∑

k=0

zk

(ak + 1)(ak−1 + 1) · . . . · (a+ 1)
, a > 1,

belongs to the Laguerre-Pólya class if and only if there exists z0 ∈
(−(a2 + 1);−(a+ 1)) such that Fa(z0) ≤ 0.
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A note on compact-like semitopological groups
Alex Ravsky

Pidstryhach Institute for Applied Problems of Mechanics and
Mathematics of National Academy of Sciences, Ukraine

We give a talk on a few results related to separation axioms
and automatic continuity of operations in compact-like semitopolog-
ical groups. In particular, is presented a semiregular semitopological
group G which is not T3. We show that each weakly semiregular
compact semitopological group is a topological group. On the other
hand, constructed examples of quasiregular T1 compact and T2 se-
quentially compact quasitopological groups, which are not paratopo-
logical groups. Also we prove that a semitopological group (G, τ) is
a topological group provided there exists a Hausdorff topology σ ⊃ τ
on G such that (G, σ) is a precompact topological group and (G, τ)
is weakly semiregular or (G, σ) is a feebly compact paratopological
group and (G, τ) is T3.

e-mail: alexander.ravsky@uni-wuerzburg.de

33



Categorical properties of functionals generated by the
triangular norms

Khrystyna Sukhorukova

Ivan Franko National University of Lviv, Ukraine

We consider the class of functionals introduced in [1]. Note that
some applications of these functionals can be found in [2].

A triangular norm (t-norm) is a continuous, associative, commu-
tative and monotonic operation on the unit segment for which 1 is a
unit.

The following are examples of t-norms:

1. a ∗ b = ab;

2. a ∗ b = min{a, b};

3. a ∗ b = max{a+ b− 1, 0} ( Lojasiewicz t-norm).

LetX be a compact Hausdorff space. A functional µ : C(X, [0, 1]) →
[0, 1] is a ∗-measure if

1. µ(cX) = c;

2. µ(λ ∗ φ) = λ ∗ µ(φ);

3. µ(φ ∨ ψ) = µ(φ) ∨ µ(ψ),

for all c ∈ [0, 1] and φ,ψ ∈ C(X, [0, 1]). (Here, ∨ denotes the maxi-
mum.)

We show that every ∗-measure is a continuous map. The space
M∗(X) of the ∗-measures on X is compact Hausdorff. Actually, M∗

is a functor in the category Comp of compact Hausdorff spaces.
Let exp denote the hyperspace functor in Comp. Denote by

M̄(X) the set of all A ∈ exp(X × I) satisfying the following con-
ditions:

1. A ∩ (X × {1}) ̸= ∅;

2. X × {0} ⊂ A;
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3. A is saturated, i.e., if (x, t) ∈ A, then (x, s) ∈ A for every
s ∈ [0, t].

Let f : X → Y be a map. Define the map M̄(f) : M̄(X) → M̄(Y )
by the formula:

M̄(f)(A) = exp(f × 1I)(A) ∪ (Y × {0}).

Actually, M̄ is a functor in the category Comp. We establish
relations between the functors M∗ and M̄ . Also, we consider the
monads generated by these functors.

Our results are extensions of those obtained in [3].
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Application of absolutely summing operators to
isomorphic classification of Banach spaces of

differentiable functions
Micha l Wojciechowski

Institute of Mathematics, Polish Academy of Sciences, Warsaw,
Poland

We give a brief introduction to the theory of absolutely summing
operators as operator ideals on Banach spaces. We present several
proofs of remarkable theorem of Grothendieck on operators from L1

spaces to the Hilbert space. Then we show how Grothendieck’s the-
orem could be applied to prove that the Sobolev space of functions
with integrable gradient is not isomorphic to L1 space.
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Non-expansive bijections between unit balls of Banach
spaces and related problems

Olesia Zavarzina

Vasyl Karazin Kharkiv National University, Ukraine

A metric space M is called expand-contract plastic if every bijec-
tive non-expansive (BnE for short) map F : M → M is an isometry.
There is a number of publications devoted to studying of this prop-
erty [2], [3], [4]. In particular, Theorem 2.6 from [2] states that the
unit ball of every strictly convex Banach space is plastic. In [5] more
general question was considered.

Question 1. Let X,Y be Banach spaces and let F : BX → BY be a
BnE map. For which Banach spaces F turns out to be an isometry?

In the same paper, continuing the result from [2], this question
was answered in positive for strictly convex space Y and arbitrary X.
We get the analogous theorem, where the roles of spaces X and Y are
inverted.

Theorem 1. Let X, Y be Banach spaces, X be strictly convex and
F : BX → BY be a BnE map. Then F is an isometry.

The result of Theorem 2 is based on the facts that the unit sphere
of any strictly convex space consists of extreme points, and the preim-
age of any extreme point under BnE map is also an extreme point.
We were able to get the following generalization.

Theorem 2. Let X, Y be Banach spaces, F : BX → BY be a BnE
map, then for every n ∈ N the preimage of any n-dimensional convex
polyhedral extreme subset C ⊂ SY is an n-dimensional convex poly-
hedral extreme subset of SX . Moreover, the equality −F−1(−C) =
F−1(C) holds true.

Theorem 3. Let X, Y be Banach spaces, F : BX → BY be a BnE
map and SY be the union of all its finite-dimensional polyhedral ex-
treme subsets. Then F is an isometry.
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The talk will be devoted to problems motivated by the follow-
ing celebrated result of Arkhangelskii: Every first countable compact
Hausdorff space has cardinality at most 2ℵ0 .
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