On variants of the extended bicyclic semigroup

Kateryna Maksymyk

National University of Lviv

XIII-th Summer School “Analysis, Topology and Applications”
29 July - 11 August 2018, Vyzhnytsya town, Chernivtsi Region, Ukraine

All results are obtained jointly with Oleg Gutik
Definition

A semi(topological) semigroup is a Hausdorff topological space with separately continuous (continuous) semigroup operations.

Definition

A topology τ on a semigroup S is called:

- *shift-continuous* if (S, τ) is a semi(topological) semigroup;
- *semigroup* if (S, τ) is a topological semigroup.
Definitions

Definition

A \textit{semitopological (topological) semigroup} is a Hausdorff topological space with separately continuous (continuous) semigroup operations.

Definition

A topology \(\tau \) on a semigroup \(S \) is called:

- \textit{shift-continuous} if \((S, \tau)\) is a semitopological semigroup;
- \textit{semigroup} if \((S, \tau)\) is a topological semigroup.
Definition (E. Lyapin, 1946)

The **bicyclic semigroup (monoid)** $C(p, q)$ is the semigroup with the identity 1 generated by two elements p and q subject only to the condition $pq = 1$.

The distinct elements of the bicyclic monoid are exhibited in the following useful array:

\[
\begin{array}{cccccc}
1 & p & p^2 & p^3 & \ldots \\
q & qp & qp^2 & qp^3 & \ldots \\
q^2 & q^2p & q^2p^2 & q^2p^3 & \ldots \\
q^3 & q^3p & q^3p^2 & q^3p^3 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}
\]
Definition (E. Lyapin, 1946)

The bicyclic semigroup (monoid) $\mathcal{C}(p, q)$ is the semigroup with the identity 1 generated by two elements p and q subject only to the condition $pq = 1$.

The distinct elements of the bicyclic monoid are exhibited in the following useful array:

\[
\begin{align*}
1 & \quad p & \quad p^2 & \quad p^3 & \quad \ldots \\
q & \quad qp & \quad qp^2 & \quad qp^3 & \quad \ldots \\
q^2 & \quad q^2p & \quad q^2p^2 & \quad q^2p^3 & \quad \ldots \\
q^3 & \quad q^3p & \quad q^3p^2 & \quad q^3p^3 & \quad \ldots \\
\vdots & \quad \vdots & \quad \vdots & \quad \vdots & \quad \ddots
\end{align*}
\]
Old classic results on the bicyclic monoid

Theorem (O. Andersen, 1952)
A (0–)simple semigroup with an idempotent is completely (0–)simple if and only if it does not contain the bicyclic semigroup.

Theorem (C. Eberhart, J. Selden, 1969)
The bicyclic semigroup $C(p, q)$ admits only the discrete semigroup Hausdorff topology and if a topological semigroup S contains it as a dense subsemigroup then $C(p, q)$ is an open subset of S.

Theorem (M. O. Bertman, T. T. West, 1976)
The bicyclic semigroup $C(p, q)$ admits only the discrete Hausdorff topology τ such that $(C(p, q), \tau)$ is a semitopological semigroup.
<table>
<thead>
<tr>
<th>Theorem (O. Andersen, 1952)</th>
<th>A (0–)simple semigroup with an idempotent is completely (0–)simple if and only if it does not contain the bicyclic semigroup.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theorem (C. Eberhart, J. Selden, 1969)</td>
<td>The bicyclic semigroup $\mathcal{C}(p, q)$ admits only the discrete semigroup Hausdorff topology and if a topological semigroup S contains it as a dense subsemigroup then $\mathcal{C}(p, q)$ is an open subset of S.</td>
</tr>
<tr>
<td>Theorem (M. O. Bertman, T. T. West, 1976)</td>
<td>The bicyclic semigroup $\mathcal{C}(p, q)$ admits only the discrete Hausdorff topology τ such that $(\mathcal{C}(p, q), \tau)$ is a semitopological semigroup.</td>
</tr>
</tbody>
</table>
Old classic results on the bicyclic monoid

Theorem (O. Andersen, 1952)
A (0–)simple semigroup with an idempotent is completely (0–)simple if and only if it does not contain the bicyclic semigroup.

Theorem (C. Eberhart, J. Selden, 1969)
The bicyclic semigroup $C(p, q)$ admits only the discrete semigroup Hausdorff topology and if a topological semigroup S contains it as a dense subsemigroup then $C(p, q)$ is an open subset of S.

Theorem (M. O. Bertman, T. T. West, 1976)
The bicyclic semigroup $C(p, q)$ admits only the discrete Hausdorff topology τ such that $(C(p, q), \tau)$ is a semitopological semigroup.
An interassociate of a semigroup \((S, \cdot)\) is the semigroup \((S, \ast)\) such that for all \(a, b, c \in S\),
\[
a \cdot (b \ast c) = (a \cdot b) \ast c \quad \text{and} \quad a \ast (b \cdot c) = (a \ast b) \cdot c.
\]

Note, that if \(S\) is a monoid, every interassociate must satisfy the condition
\[
a \ast b = acb
\]
for some fixed element \(c \in S\).

This type of interassociate was called a variant (by J.B. Hickey, 1983).
Definition

An interassociate of a semigroup \((S, \cdot)\) is the semigroup \((S, \ast)\) such that for all \(a, b, c \in S\),
\[
a \cdot (b \ast c) = (a \cdot b) \ast c \quad \text{and} \quad a \ast (b \cdot c) = (a \ast b) \cdot c.
\]

Note, that if \(S\) is a monoid, every interassociate must satisfy the condition
\[
a \ast b = acb
\]
for some fixed element \(c \in S\).

This type of interassociate was called a variant (by J.B. Hickey, 1983).
An interassociate of a semigroup \((S, \cdot)\) is the semigroup \((S, *)\) such that for all \(a, b, c \in S\),
\[a \cdot (b * c) = (a \cdot b) * c\quad \text{and} \quad a * (b \cdot c) = (a * b) \cdot c.\]

Note, that if \(S\) is a monoid, every interassociate must satisfy the condition
\[a * b = acb\]
for some fixed element \(c \in S\).

This type of interassociate was called a variant (by J.B. Hickey, 1983).
In particular, if p and q are the generators of the bicyclic semigroup $C(p, q)$ and m and n are fixed nonnegative integers, the operation

$$a *_{m,n} b = aq^m p^n b$$

is known to be an interassociate.

Later for fixed non-negative integers m and n the interassociate $(C(p, q), *_{m,n})$ of the bicyclic monoid $C(p, q)$ will be denoted by $C_{m,n}$.

Theorem (B. N. Givens, A. Rosin, and K. Linton, 2017)

For distinct pairs (m, n) and (s, t), the interassociates $(C(p, q), *_{m,n})$ and $(C(p, q), *_{s,t})$ are not isomorphic.

In this paper the bicyclic semigroup $C(p, q)$ and its interassociates are investigated. Also the authors generalized a result regarding homomorphisms on $C(p, q)$ to homomorphisms on its interassociates.
In particular, if p and q are the generators of the bicyclic semigroup $\mathcal{C}(p, q)$ and m and n are fixed nonnegative integers, the operation

$$a *_{m,n} b = aq^m p^n b$$

is known to be an interassociate.

Later for fixed non-negative integers m and n the interassociate $(\mathcal{C}(p, q), *_{m,n})$ of the bicyclic monoid $\mathcal{C}(p, q)$ will be denoted by $\mathcal{C}_{m,n}$.

Theorem (B. N. Givens, A. Rosin, and K. Linton, 2017)

For distinct pairs (m, n) and (s, t), the interassociates $(\mathcal{C}(p, q), *_{m,n})$ and $(\mathcal{C}(p, q), *_{s,t})$ are not isomorphic.

In this paper the bicyclic semigroup $\mathcal{C}(p, q)$ and its interassociates are investigated. Also the authors generalized a result regarding homomorphisms on $\mathcal{C}(p, q)$ to homomorphisms on its interassociates.
In particular, if \(p \) and \(q \) are the generators of the bicyclic semigroup \(C(p, q) \) and \(m \) and \(n \) are fixed nonnegative integers, the operation

\[
a \ast_{m,n} b = aq^m p^n b
\]

is known to be an interassociate.

Later for fixed non-negative integers \(m \) and \(n \) the interassociate \((C(p, q), \ast_{m,n}) \) of the bicyclic monoid \(C(p, q) \) will be denoted by \(C_{m,n} \).

Theorem (B. N. Givens, A. Rosin, and K. Linton, 2017)

For distinct pairs \((m, n) \) and \((s, t) \), the interassociates \((C(p, q), \ast_{m,n}) \) and \((C(p, q), \ast_{s,t}) \) are not isomorphic.

In this paper the bicyclic semigroup \(C(p, q) \) and its interassociates are investigated. Also the authors generalized a result regarding homomorphisms on \(C(p, q) \) to homomorphisms on its interassociates.
In particular, if p and q are the generators of the bicyclic semigroup $\mathcal{C}(p, q)$ and m and n are fixed nonnegative integers, the operation

$$a *_{m,n} b = aq^m p^n b$$

is known to be an interassociate.

Later for fixed non-negative integers m and n the interassociate $(\mathcal{C}(p, q), *_{m,n})$ of the bicyclic monoid $\mathcal{C}(p, q)$ will be denoted by $\mathcal{C}_{m,n}$.

Theorem (B. N. Givens, A. Rosin, and K. Linton, 2017)

For distinct pairs (m, n) and (s, t), the interassociates $(\mathcal{C}(p, q), *_{m,n})$ and $(\mathcal{C}(p, q), *_{s,t})$ are not isomorphic.

In this paper the bicyclic semigroup $\mathcal{C}(p, q)$ and its interassociates are investigated. Also the authors generalized a result regarding homomorphisms on $\mathcal{C}(p, q)$ to homomorphisms on its interassociates.
On the Cartesian product $\mathcal{C}_\mathbb{Z} = \mathbb{Z} \times \mathbb{Z}$ we define the semigroup operation as follows:

$$(a, b) \cdot (c, d) = \begin{cases}
(a - b + c, d), & \text{if } b < c; \\
(a, d), & \text{if } b = c; \\
(a, d + b - c), & \text{if } b > c,
\end{cases}$$

for $a, b, c, d \in \mathbb{Z}$.

The set $\mathcal{C}_\mathbb{Z}$ with such defined operation we shall call the \textit{extended bicyclic semigroup}.

\textbf{Theorem (I.R. Fihel, O.V. Gutik, 2011)}

Every non-trivial congruence \mathcal{C} on the semigroup $\mathcal{C}_\mathbb{Z}$ is a group congruence, and moreover the quotient semigroup $\mathcal{C}_\mathbb{Z}/\mathcal{C}$ is isomorphic to a cyclic group.

\textbf{Theorem (I.R. Fihel, O.V. Gutik, 2011)}

The semigroup $\mathcal{C}_\mathbb{Z}$ as a Hausdorff semitopological semigroup admits only the discrete topology.
On the Cartesian product $C_\mathbb{Z} = \mathbb{Z} \times \mathbb{Z}$ we define the semigroup operation as follows:

\[(a, b) \cdot (c, d) = \begin{cases}
(a - b + c, d), & \text{if } b < c; \\
(a, d), & \text{if } b = c; \\
(a, d + b - c), & \text{if } b > c,
\end{cases} \tag{1}\]

for $a, b, c, d \in \mathbb{Z}$.

The set $C_\mathbb{Z}$ with such defined operation we shall call the extended bicyclic semigroup.

Theorem (I.R. Fihel, O.V. Gutik, 2011)

Every non-trivial congruence \mathcal{C} on the semigroup $C_\mathbb{Z}$ is a group congruence, and moreover the quotient semigroup $C_\mathbb{Z}/\mathcal{C}$ is isomorphic to a cyclic group.

Theorem (I.R. Fihel, O.V. Gutik, 2011)

The semigroup $C_\mathbb{Z}$ as a Hausdorff semitopological semigroup admits only the discrete topology.
The extended bicyclic semigroup

On the Cartesian product $\mathcal{C}_\mathbb{Z} = \mathbb{Z} \times \mathbb{Z}$ we define the semigroup operation as follows:

$$(a, b) \cdot (c, d) = \begin{cases}
(a - b + c, d), & \text{if } b < c; \\
(a, d), & \text{if } b = c; \\
(a, d + b - c), & \text{if } b > c,
\end{cases}$$

for $a, b, c, d \in \mathbb{Z}$.

The set $\mathcal{C}_\mathbb{Z}$ with such defined operation we shall call the extended bicyclic semigroup.

Theorem (I.R. Fihel, O.V. Gutik, 2011)

Every non-trivial congruence \mathcal{C} on the semigroup $\mathcal{C}_\mathbb{Z}$ is a group congruence, and moreover the quotient semigroup $\mathcal{C}_\mathbb{Z}/\mathcal{C}$ is isomorphic to a cyclic group.

Theorem (I.R. Fihel, O.V. Gutik, 2011)

The semigroup $\mathcal{C}_\mathbb{Z}$ as a Hausdorff semitopological semigroup admits only the discrete topology.
Theorem (O.V. Gutik, K.M. Maksymyk, 2016)

For arbitrary non-negative integers m and n every Hausdorff topology τ on $C_{m,n}$ such that $(C_{m,n}, \tau)$ is a semitopological semigroup, is discrete. Thus $C_{m,n}$ is a discrete subspace of any topological semigroup containing it.

Theorem (O.V. Gutik, K.M. Maksymyk, 2016)

If m and n are arbitrary non-negative integers the interassociate $C_{m,n}$ of the bicyclic monoid $C(p,q)$ is a dense subsemigroup of a Hausdorff semitopological semigroup (S, \cdot) and $I = S \setminus C_{m,n} \neq \emptyset$ then I is a two-sided ideal of the semigroup S.
Theorem (O.V. Gutik, K.M. Maksymyk, 2016)

For arbitrary non-negative integers \(m \) and \(n \) every Hausdorff topology \(\tau \) on \(\mathcal{C}_{m,n} \) such that \((\mathcal{C}_{m,n}, \tau)\) is a semitopological semigroup, is discrete. Thus \(\mathcal{C}_{m,n} \) is a discrete subspace of any topological semigroup containing it.

Theorem (O.V. Gutik, K.M. Maksymyk, 2016)

If \(m \) and \(n \) are arbitrary non-negative integers the interassociate \(\mathcal{C}_{m,n} \) of the bicyclic monoid \(\mathcal{C}(p, q) \) is a dense subsemigroup of a Hausdorff semitopological semigroup \((S, \cdot)\) and \(I = S \setminus \mathcal{C}_{m,n} \neq \emptyset \) then \(I \) is a two-sided ideal of the semigroup \(S \).
Example (O.V. Gutik, K.M. Maksymyk, 2016)

On the semigroup $C_{0}^{m,n}$ we define a topology τ_{Ac} in the following way:

(i) every element of the semigroup $C_{m,n}$ is an isolated point in the space $(C_{m,n}, \tau_{Ac})$;

(ii) the family $\mathcal{B}(0) = \{ U \subseteq C_{m,n} : U \ni 0 \text{ and } C_{m,n} \setminus U \text{ is finite} \}$ determines a base of the topology τ_{Ac} at zero $0 \in C_{m,n}$.

i.e., τ_{Ac} is the topology of the Alexandroff one-point compactification of the discrete space $C_{m,n}$ with the remainder $\{0\}$. The semigroup operation in $(C_{m,n}, \tau_{Ac})$ is separately continuous.

Theorem (O.V. Gutik, K.M. Maksymyk, 2016)

Let m and n be arbitrary non-negative integers. If $C_{0}^{m,n}$ is a Hausdorff locally compact semitopological semigroup, then either $C_{0}^{m,n}$ is discrete or $C_{0}^{m,n}$ is topologically isomorphic to $(C_{m,n}, \tau_{Ac})$.
Example (O.V. Gutik, K.M. Maksymyk, 2016)

On the semigroup \(C_{m,n} \) we define a topology \(\tau_{Ac} \) in the following way:

(i) every element of the semigroup \(C_{m,n} \) is an isolated point in the space \((C_m^n, \tau_{Ac}) \);

(ii) the family \(\mathcal{B}(0) = \{ U \subseteq C_{m,n} : U \ni 0 \text{ and } C_{m,n} \setminus U \text{ is finite} \} \) determines a base of the topology \(\tau_{Ac} \) at zero \(0 \in C_{m,n} \).

i.e., \(\tau_{Ac} \) is the topology of the Alexandroff one-point compactification of the discrete space \(C_{m,n} \) with the remainder \(\{0\} \). The semigroup operation in \((C_{m,n}^0, \tau_{Ac}) \) is separately continuous.

Theorem (O.V. Gutik, K.M. Maksymyk, 2016)

Let \(m \) and \(n \) be arbitrary non-negative integers. If \(C_{m,n}^0 \) is a Hausdorff locally compact semitopological semigroup, then either \(C_{m,n}^0 \) is discrete or \(C_{m,n}^0 \) is topologically isomorphic to \((C_{m,n}^0, \tau_{Ac}) \).
Theorem

For an arbitrary integer k the map $h_k : \mathbb{C}_Z \rightarrow \mathbb{C}_Z$ defined by the formula

$$h_k ((i, j)) = (i + k, j + k),$$

is an automorphism of the extended bicyclic semigroup \mathbb{C}_Z and every automorphism $h : \mathbb{C}_Z \rightarrow \mathbb{C}_Z$ of \mathbb{C}_Z has the form (2). Moreover the group $\text{Aut}(\mathbb{C}_Z)$ of automorphisms of \mathbb{C}_Z is isomorphic to the additive group of integers $\mathbb{Z}(+)$ and this isomorphism $\mathcal{H} : \mathbb{Z}(+) \rightarrow \text{Aut}(\mathbb{C}_Z)$ is defined by the formula $\mathcal{H}(k) = h_k$, $k \in \mathbb{Z}$.

Proposition

Let m and n be arbitrary integers, (a, b) and (c, d) be elements of $\mathbb{C}_Z^{m,n}$. Then the following statements hold.

1. $(a, b) R (c, d) \iff (a = c) \land ((b = d) \lor (b, d \geq m))$.
2. $(a, b) L (c, d) \iff (b = d) \land ((a = c) \lor (a, c \geq n))$.
3. $(a, b) H (c, d) \iff (a, b) = (c, d)$.
4. $(a, b) D (c, d) \iff (a, b) = (c, d) \lor (a, c \geq n) \lor (b, d \geq m)$.
5. $(a, b) J (c, d)$ for all $(a, b), (c, d) \in \mathbb{C}_Z^{m,n}$.
On variants of the extended bicyclic semigroup

Theorem

For an arbitrary integer k the map $h_k : \mathcal{C}_\mathbb{Z} \rightarrow \mathcal{C}_\mathbb{Z}$ defined by the formula

$$h_k((i, j)) = (i + k, j + k),$$

is an automorphism of the extended bicyclic semigroup $\mathcal{C}_\mathbb{Z}$ and every automorphism $h : \mathcal{C}_\mathbb{Z} \rightarrow \mathcal{C}_\mathbb{Z}$ of $\mathcal{C}_\mathbb{Z}$ has the form (2). Moreover the group $\text{Aut}(\mathcal{C}_\mathbb{Z})$ of automorphisms of $\mathcal{C}_\mathbb{Z}$ is isomorphic to the additive group of integers $\mathbb{Z}(+)$ and this isomorphism $\mathcal{H} : \mathbb{Z}(+) \rightarrow \text{Aut}(\mathcal{C}_\mathbb{Z})$ is defined by the formula $\mathcal{H}(k) = h_k, k \in \mathbb{Z}$.

Proposition

Let m and n be arbitrary integers, (a, b) and (c, d) be elements of $\mathcal{C}_\mathbb{Z}^{m,n}$. Then the following statements hold.

1. $(a, b)\mathcal{R}(c, d) \iff (a = c) \land ((b = d) \lor (b, d \geq m))$.
2. $(a, b)\mathcal{L}(c, d) \iff (b = d) \land ((a = c) \lor (a, c \geq n))$.
3. $(a, b)\mathcal{H}(c, d) \iff (a, b) = (c, d)$.
4. $(a, b)\mathcal{D}(c, d) \iff (a, b) = (c, d) \lor (a, c \geq n) \lor (b, d \geq m)$.
5. $(a, b)\mathcal{J}(c, d)$ for all $(a, b), (c, d) \in \mathcal{C}_\mathbb{Z}^{m,n}$.
Theorem

Any two variants of the extended bicyclic semigroup \mathcal{C}_Z are isomorphic.

Theorem

The variant $\mathcal{C}_Z^{0,0}$ of the extended bicyclic semigroup \mathcal{C}_Z is not finitely generated.

Theorem

Let τ be a Hausdorff shift-continuous topology on the semigroup $\mathcal{C}_Z^{0,0}$. Then every of inequality $a > 0$ or $b > 0$ implies that (a, b) is an isolated point of $(\mathcal{C}_Z^{0,0}, \tau)$.
Theorem
Any two variants of the extended bicyclic semigroup \mathcal{C}_Z are isomorphic.

Theorem
The variant $\mathcal{C}^{0,0}_{\mathbb{Z}}$ of the extended bicyclic semigroup \mathcal{C}_Z is not finitely generated.

Theorem
Let τ be a Hausdorff shift-continuous topology on the semigroup $\mathcal{C}^{0,0}_{\mathbb{Z}}$. Then every of inequality $a > 0$ or $b > 0$ implies that (a, b) is an isolated point of $(\mathcal{C}^{0,0}_{\mathbb{Z}}, \tau)$.
Theorem
Any two variants of the extended bicyclic semigroup C_Z are isomorphic.

Theorem
The variant $C_0^0,0$ of the extended bicyclic semigroup C_Z is not finitely generated.

Theorem
Let τ be a Hausdorff shift-continuous topology on the semigroup $C_0^0,0$. Then every of inequality $a > 0$ or $b > 0$ implies that (a, b) is an isolated point of $(C_0^0,0, \tau)$.
Example

We define the topology τ^* on $\mathcal{C}_Z^{0,0}$ in the following way. Put

(i) (a, b) is an isolated point of $(\mathcal{C}_Z^{0,0}, \tau^*)$ if and only if at least one of the following conditions holds $a > 0$ or $b > 0$;

(ii) if $ab = 0$ and $a + b \leq 0$ we let $A_{(a,b)} = \{(a - i, b - i): i \in \mathbb{N}_0\}$ be any Hausdorff space and $A_{(a,b)}$ is an open-and-closed subset of $(\mathcal{C}_Z^{0,0}, \tau^*)$.

It is obvious that $(\mathcal{C}_Z^{0,0}, \tau^*)$ is a Hausdorff space.

Proposition

$(\mathcal{C}_Z^{0,0}, \tau^*)$ is a topological semigroup.
Example

We define the topology τ^* on $C_{Z,0}^{0,0}$ in the following way. Put

(i) (a, b) is an isolated point of $(C_{Z,0}^{0,0}, \tau^*)$ if and only if at least one of the following conditions holds $a > 0$ or $b > 0$;

(ii) if $ab = 0$ and $a + b \leq 0$ we let $A_{(a,b)} = \{(a - i, b - i): i \in N_0\}$ be any Hausdorff space and $A_{(a,b)}$ is an open-and-closed subset of $(C_{Z,0}^{0,0}, \tau^*)$.

It is obvious that $(C_{Z,0}^{0,0}, \tau^*)$ is a Hausdorff space.

Proposition

$(C_{Z,0}^{0,0}, \tau^*)$ is a topological semigroup.
Thank You for attention!