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ON THE MACKEY TOPOLOGY ON ABELIAN TOPOLOGICAL GROUPS
Lydia Auflenhofer
Fakultat fir Informatik und Mathematik Universitat Passau,
Germany

For a locally convex vector space (V,7) there exists a finest lo-
cally convex vector space topology p such that the topological dual
spaces (V,7)" and (V, 1)’ coincide algebraically. This topology is called
Mackey topology. If (V, ) is a metrizable locally convex vector space,
then 7 is the Mackey topology.

In 1995 Chasco, Martin Peinador and Tarieladze asked the follow-
ing question: Given a locally quasi—convex group (G, 7), does there
exist a finest locally quasi—convex group topology p on G such that
the character groups (G, 7)" and (G, u)" coincide?

Two locally quasi—convex group topologies 7 and 7’ on an abelian
group G are named compatible if the character groups (G,7)" and
(G,7")" coincide algebraically. The set of group topologies, which are
compatible with a given group topology, forms a partially ordered set
with the weak topology as bottom element. In case there exists a top
element, it is called the Mackey topology.

It was shown in the above mentioned paper that every locally
compact group topology on an abelian group is the Mackey topology.

In the talk we first examine general result concerning compatible
group topologies. Afterwards, we study compatible group topologies
on LCA groups. (Surprisingly, the cases of R, Z and the Prufer groups
Z(p) are the most difficult ones.)

Then we give a survey on groups where the given topology is /
is not the Mackey toplogy. Finally we present a locally quasi—convex
group which does not admit a Mackey topology.

References

[1] L. AuBlenhofer, On the non—existence of the Mackey topology, to appear
in Forum Math.; https://doi.org/10.1515 /forum-2017-0179.

[2] L. AuBlenhofer, D. de la Barrera Mayoral, D. Dikranjan and E. Martin
Peinador, Varopoulos paradigm: Mackey property vs metrizability in



topological groups, Revista Matematica Complutense 30 no.1 (2017),
167-184.

[3] L. AuBenhofer and D. Dikranjan, The problem of Mackey topologies: a
complete solution in the case of bounded groups, Topology Appl. 221
(2017) 206—224.

[4] L. Auenhofer, D. Dikranjan and E. Martin Peinador, Locally quasi-
convex compatible topologies on a topological group , Axioms 4(4) (2015,
), 436-458; doi:10.3390/axioms4040436

[5] M.J. Chasco, E. Martin-Peinador and V. Tarieladze, On Mackey topol-
ogy for groups, Stud. Math. 132 no.3 (1999), 257-284.

[6] S. Gabriyelyan, A locally quasi-convexr abelian group without Mackey
topology, preprint 2017, https://arxiv.org/abs/1601.03219v2

e-mail: aussenho@fim.uni-passau.de

ON COMPLETE TOPOLOGIZED SEMILATTICES
Taras Banakh
Jan Kochanowsk: University in Kielce, Poland
and
ITvan Franko National University of Lviv, Ukraine

In the lectures with shall survey some properties of complete topol-
ogized semilattices.

A topologized semilattice is a semilattice endowed with a topology.

A topologized semilattice is complete if each chain C C X has
inf C' and sup C that belong to the closure of the chain C' in X.

We shall prove that each complete topologized semilattice X is
closed in any functionally Hausdorff semitopological semilattice that
contains X. Also we shall prove that the partial order in a complete
functionally Hausdorff semitopological semilattice is a closed subset
of X x X.

More details can be found in the following preprints.
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WEAK TOPOLOGIES ON TOPOLOGIZED SEMILATTICES
Serhii Bardyla
Ivan Franko National University of Lviv, Ukraine

We will discuss an interplay between weak topologies on topolo-
gized semilattices.

e-mail: sbardyla@yahoo.com

CURVATURE PROPERTIES OF LCK-MANIFOLDS AND THEIR
SUBMANIFOLDS
Yevhen Cherevko and Olena Chepurna
Odesa National Economic University, Ukraine

Definition 1. A Hermitian manifold (M*™,J,g) is called a locally
conformal Kéhler manifold (LCK - manifold) if there is an open cover
= {Ua}ocEA of M*™ and a family {oa}aca of C™ functions o, :
U, — R so that each local metric
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1s Kahlerian. An LCK - manifold is endowed with some form w, so
called a Lee form which can be calculated as [1]

1
m—1

0o J,

w =

The form should be closed:
dw = 0.

There is A. Gray’s[2] classification of Hermitian manifolds : M?™ €
L; if the curvature tensor R of M?™ satisfies the identity (i), where

(1) R(X,Y,Z, W) =R(X,Y,JZ,JW)

(2) R(X,Y,Z,W) =
= R(JX,JY,Z,W)+ R(JX,Y,JZ,W) + R(JX,Y, Z, JW)

(3) R(X.,Y,Z,W) = R(JX,JY,JZ,JW)

Vaisman|3] have proved that if M?™ is LC K —manifold, then Ly =
Ls.

It’s worth for noting that the classification isn’t a complete one.
For example, the generalized Hopf manifolds are included in neither
class. We study immersion ¥ : M?™~1 — M?™ which is locally
represented by functions

% = a:a(yl,...,yZm*l)

)

where a = 1,...,2m, 3%, i=1,...,2m — 1 is a local coordinate system
in M?P. We put here
B = 8il‘a.

(]

We obtained the theorems.

Theorem 1. If a hypersurface ! of a LCK-manifold M>*™ is
an integral manifold of the distribution defined by the equation

w=20
where w is Lee form of the LCK-manifold M>™ that satisfies the con-
dition

Vxw(¥) = gl Pg(X, ¥) — Jw(X)u(Y),
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i.e. M?™ € Ly, then induced by the immersion the almost contact
structure

1) f = J3BLE
2) n= I® ||B Jﬁwa,
3) h=— HwHBﬁJan

is a c-Sasakian structure, where ¢ = i||w||. Moreover, the manifold
=72m

M s a totally umbilical hypersurface of M>*™.

Theorem 2. If a hypersurface ! of an LCK-manifold M?™ is
an integral manifold of the distribution defined by the equation

w=20

where w is Lee form of the LCK-manifold M>™ that satisfies the con-
dition )
Vxw(¥) = 5[l Pg(X, 1),

then induced by the immersion the almost contact structure

1) fl =JgBLB);

2) = Tw ||BBJ5WOH

k _
3) € =~y BhJawe.

is the cosymplectic structure i.e. @ normal almost contact metric
structure for which the conditions

are satisfied. Moreover, M s a totally umbilical hypersurface of
M2,

Unfortunately, the LC' K —manifolds whose Lee forms satisfy the
equation Vxw(Y) = 1||w|[?9(X,Y") are included in neither class £;.
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STRONGLY NORM ATTAINING LIPSCHITZ OPERATORS
Rafael Chiclana Vega
Universidad de Granada, Spain

The study of the density of norm attaining linear operators has its
root in the classical Bishop-Phelps theorem which states that the set
NA(X,R) of those linear functionals 7" from a Banach space X to R
which attain their norm (i.e there exists x in the unit sphere of X such
that |T'(x)| = ||T||) is dense in the dual space of X. The aim of this
talk is to study the set SNA(M,Y") of those Lipschitz operators from
a metric space M to a Banach space Y which attain their Lipschitz
norm, as a nonlinear generalisation of the norm attaining linear oper-
ators theory. We show some metric spaces M such that SNA(M,R)
is not norm dense and give conditions wich are sufficient to provide
the norm density of SNA(M,Y) in the space of all Lipschitz operators
from M to any Banach space Y, studying the relationship between
them.

e-mail: rafachiclanavega@gmail.com

ABOUT ONE ORTHOGONAL TRIGONOMETRIC SCHAUDER BASIS FOR
THE SPACE C(T?)
Nadiia Derevianko
Institute of Mathematics of NAS, Ukraine
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Let T? & [—m, )2 be the 2-dimensional torus and C(T?) be the
space of 2m-periodic in each variable continuous on R? functions.
Our main result is the construction of an orthogonal trigonometric
Schauder basis for the space C(T?) [1]. Further for this basis we use
notation {tx}ren-

Our results generalize the one-dimensional construction that is
based on the kernel of de la Vallée Poussin [2]. To construct this basis
we use ideas of a dyadic anisotropic periodic multiresolution analysis
(PMRA) and corresponding wavelet spaces that were developed in [3]
and [4]. The multiresolution analysis is formed using the sequence of
only rotation matrices. The polynomial degree is considered in terms
of the [1- and [y -norms.

For a function f € C(T?) and p € N we define the operator

I

Suf =Y (Frtet,

k=1

where (f,t;) are the Fourier coefficients with respect to the basis
{tk}ken.
The focus of attention is the estimation of the norm .S, | ¢(12)—c(12)-
This is joint work with Vitalii Myroniuk (Institute of Mathematics
NAS Ukraine) and Jiirgen Prestin (Institut fiir Mathematik, Univer-
sitat zu Liibeck).
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CATEGORICAL RESOLUTIONS OF SINGULAR CURVES
Yuriy Drozd
Institute of Mathematics of National Academy of Sciences, Kyiv,
Ukraine

It is a survey of a joint work with Igor Burban.

We construct a categorical resolution of a singular curve using a
certain sheaf of orders of finite global dimension. Actually, we show
that the derived category of coherent sheaves over this sheaf of orders
provides a recollement of the derived category of coherent sheaves over
the original curve. In rational case we also show that the resulting
derived category is equivalent to the derived category of modules over
a quasi-hereditary finite dimesional algebra.

T am also going to explain why the “usual” resolution is not enough,
at least from the homological point of view.

e-mail: y.a.drozd@gmail.com

THE AMENABILITY TO ALGEBRAIC AND ANALYTICAL PERSPECTIVE
Rachid El Harti
University Hassan First Morocco

The talk is a synthesis on my contributions that I have done in
several institutes on the subject of the amenability to algebraic and
analytical perspective since 2003 and is based on the following papers.
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[4] The semisimplicity of amenable operator algebras. Archiv der Mathe-
matik August 2013, Volume 101, Issue 2, pp 129-133 (with Paulo Pinto).
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CAN ONE HEAR THE SHAPE OF A GROUP?
Rostislav Grigorchuk
Texas A& M University, USA

e-mail: grigorch@math.tamu. edu

THE MONOID OF MONOTONE INJECTIVE PARTIAL SELFMAPS OF
THE POSET (N3, <) WITH COFINITE DOMAINS AND IMAGES
Oleg Gutik and Olha Krokhmalna
National University of Lviv, Ukraine

We shall follow the terminology of [1].

Let N be the set of positive integers with the usual linear order
< and n be an arbitrary positive integer greater then or equal 2. On
the Cartesian power N” = N x - .- x N we define the product partial

N—_———

n-times
order, i.e.,

(7,1,,Zn)<<j1,,jn) < (Zkgjk) szl,...,n.

The set N with this partial order will be denoted by NZ.

For an arbitrary positive integer n > 2 by 20, (NZ) we denote the
semigroup of injective partial monotone selfmaps of N2 with cofinite
domains and images.

We discuss on the semigroup of injective partial monotone self-
maps of N2 with cofinite domains and images. We show that the
group of units of the semigroup #0,,(N2) is isomorphic to the group

14



of permutations of an n-elements set .#, and describe the subgroup
of idempotents of Z0(NZ). In the case n = 3 we describe the prop-
erty of elements of the semigroup %0, (NZ) as partial bijections of
the poset N:i and Green’s relations on the semigroup &0, (Ni) Also
the Witt property of the semigroup 0., (Ni) is discussed.
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ON OLD AND NEW CLASSES OF FEEBLY COMPACT SPACES
Oleg Gutik and Alex Ravsky
Faculty of Mathematics, National University of Lviv, Ukraine and
Pidstryhach Institute for Applied Problems of Mechanics and
Mathematics of NASU, Ukraine

In general topology are often investigated different classes of compact-
like spaces and relations between them, see, for instance, basic [3,
Chap. 3] and general works [2], [5], [7], [6], [4]. We consider the
present paper as a next small step in this quest.

Namely, in order to refine the stratification of compact-like spaces,
we introduce three new classes of pracompact spaces, consider their
basic properties and relations with other compact-like spaces. Our
main motivation to introduce these spaces is possible applications in
topological algebra.

Relations between different classes of compact-like spaces are also
well-studied. Some of them are presented at Diagram 3 in [5, p.17],
at Diagram 1 in [1, p. 58] (for Tychonoff spaces), and at Diagram
3.6 in [6, p. 611]. We also present a big diagram.

15



sequentially
compact

[compc]
w-bounded

Tz‘space\
totally
countably
compact

feebly compact

. k-space
sequential
countably
Ts-space compact
+scattered
Ty-Space]
sequentially countably
pracompact pracompact
sequential
selectively sequentially selectively

feebly compact

w-pracompact

totally
countably
pracompact

feebly

w-bounded

Fréchet-Urysohn space

sequentially

feebly compact

’—ﬁ feebly compact
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FRACTAL DIMENSIONS FOR NON-ADDITIVE MEASURES
Inna Hlushak and Oleh Nykyforchyn
Vasyl’ Stefanyk Precarpathian National University, Ivano-Frankivsk,
Ukraine

We follow the terminology and notation of [1] and denote by exp X
the set of all non-empty closed subsets of a compactum X. We call
a function ¢ : exp X U {0} — I a capacity on a compactum X if
the three following properties hold for all subsets F, G Cl X:

C

1. ¢(0) = 0;
2. if F C G, then ¢(F') < ¢(G) (monotonicity);

3. if ¢(F') < a, then there is an open subset U D F such that for all
G C U the inequality ¢(G) < a is valid (upper semicontinuity).

If, additionally, ¢(X) = 1 (or ¢(X) < 1) holds, then the capacity
is called normalized (resp. subnormalized). We denote by M X and
MX the sets of all normalized and of all subnormalized capacities
respectively.
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We consider the metric d on the set M X of subnormalized capac-
ities on a metric compactum (X, d) :

d(e,c) =
=inf{e > 0] c(O(F)) +e > (F),d(O(F)) + & > c(F),VF c X1,
C
here O.(F) is the closed e-neighborhood of a subset F C X. This
metric determines a compact topology on M X [1].

We investigate the problem approximation of arbitrary capacity
with regular additive measures on a finite subspace. The article [2]
proposes an algorithm which enables to find an additive measure m
on subspace Xy = {z1,%92,...,z,} C X that is (almost) the closest to
capacity ¢ € M X with respect to the distance d. The presented algo-
rithm is convenient for programmatic implementation but it requires
previously calculated values of a capacity for all 2cardinality of the space
subsets, which is not appropriate even for > 40 points. Hence, to han-
dle subspaces of greater cardinality, we need investigate dimensional
characteristics of capacities.

For a capacity ¢ € M X, among all such X < X that ¢(A) =

cl

c(A N Xp) for all A C X, there is a smallest set, which is called

the support of ¢ and denoted by supp c.

For a capacity ¢ € M X and a number € > 0, a collection F of
closed sets in X is called an e-foundation of c if, for each non-empty
A C X, there are Fy, Fy,..., F, € F, n € N, such that F; N A # &,

for a111<z<n and c(FlUF,U---UF,) > c(A) —e¢.

An e-foundation F of ¢ is called a d-e-foundation, for e > 0, § > 0,
if diamF < § for all F' € F.

Force MX,s>0,e>0,d >0, we denote:

Ns,-(c) = min{|F]| | F is a d-e-foundation of c},

Hj () = inf{Z{(diam F)* | F € F} | F is a ¢-e-foundation of c}.

We define the weak upper box dimension, the weak lower box di-
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mension, and the weak Hausdorff dimension of capacity c:
dimpy g ¢ = lim dim, g c,
e—0
dimy, g ¢ = lim dim,_p ¢,
e—0

dimpy g ¢ = lim dim. g ¢,
e—0

where

- — InNs.(c) . . InNs.(c)
dimepe =g ==, 5 dimepe = lm == 5=,

dimeg ¢ =sup{s > 0| HI(c) = oo} = inf{s > 0 | HI(c) = 0}.

Proposition 1. There is a normalized capacity ¢ on I? such that
dimy;, g ¢ = dimy g ¢ < dimg supp ¢ = dimp supp c.

In general, all these dimensions for a capacity ¢ € M X are different
(some may be equal) and do not exceed the corresponding classical
dimensions [3] of support supp c:

Proposition 2. dimyy ¢ < dimygc < dimwpc,
dimpy g ¢ < dimpg supp ¢, dimy, 5 ¢ < dimgsuppe,
dimy ¢ < dimpgsuppc for all c € M X.
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MEASURABLE SELECTORS OF MULTIFUNCTIONS IN NON-SEPARABLE
SPACES
Vladimir Kadets
V.N. Karazin Kharkiv National University, Ukraine

Let X be a real Banach space, and (€2, %, u) be a complete finite
measure space. A multifunction is a map F : Q — 2%\ {0}, a selector
of F is a function f: Q — X with f(t) € F(t) for all t € Q.

Theorem 1 (Kuratowski and Ryll-Nardzewski, 1965). Let X be a
separable Banach space, and let F : Q — 2%\ {0} be a multifunction
that takes closed values and satisfies the following Effros measurability
condition: for each open set U C X the subset {t € Q: F(t)NC # 0}
belongs to . Then F admits a Borel measurable selector.

The Kuratowski and Ryll-Nardzewski theorem enables to define an
integral of multifunctions through integrals of its selectors, and leads
to a number of types of integrals (like strong, weak or Pettis ones)
for multifunctions. There are definitions of multifunction integral,
that are not based on selectors, but in order to get good properties of
that types of integral one also needs some selection theorems. By this
reason the multifunctions integration theory deals mostly with multi-
functions whose values are subsets of a separable Banach space. Some
years ago we started with Bernardo Cascales and José Rodriguez a
joint research project whose goal was to build in non-separable spaces
an acceptably good theory of integration of multifunctions.

A multi-function F : Q — 2% is said to be scalarly measurable, if
for every z* € X* the function ¢ — supz*(F(t)) is measurable. In
particular a single valued function f : Q — X is scalarly measurable
if the composition z* o f is measurable for every z* € X*. I am
going to speak about our results about weak types of integrability for
multifunctions and scalarly measurable selectors. In particular, the
following theorem will be demonstrated.

Theorem 2 (Cascales, Kadets, Rodriguez, 2010). If all the values
of a scalarly measurable multifunction F are weakly compact, then F
admits a scalarly measurable selector.
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I strongly believe that the above cited theorem because of its gen-
erality may find applications in those areas of applied mathematics
where the Kuratowski and Ryll-Nardzewski theorem is often used,
and only my ignorance in applied mathematics does not permit me to
find such applications.
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FRAGMENTABILITY AND RELATED PROPERTIES
Olena Karlova
Yurii Fed’kovych Chernivtsi National University, Ukraine

Let X be a topological space and (Y,d) be a metric space. A
map f : X — Y is called e-fragmented for some € > 0 if for every
closed nonempty set F' C X there exists a nonempty relatively open
set U C F such that diamf(U) < e. If f is e-fragmented for every
€ > 0, then it is called fragmented.

Let % = (Ue : £ € [0,a]) be a transfinite sequence of subsets of a
topological space X. We define Z to be reqular in X, if

(a) each Ug is open in X;
b)) =UycU, CcUsC---CU,=X;
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(¢) Uy = Ug< Ug for every limit ordinal v € [0, ).

A map f: X — Y is e-fragmented iff there exists a regular se-
quence % = (U¢ : € € [0,a]) (which is called e-associated with f and
is denoted by % (f)) in X such that diamf(Ugqq \ Ue) < e for all
€ €0,a).

We say that an e-fragmented map f : X — Y is functionally
e-fragmented if %.(f) can be chosen such that every set Ug is func-
tionally open in X. Further, f is functionally e-countably fragmented
if .(f) can be chosen to be countable and f is functionally countably
fragmented if f is functionally e-countably fragmented for all € > 0.

In the lectures we will discuss the relations between functionally
countably fragmented maps and other classes of maps (Baire-one, F,-
measurable, etc.). We will also examine the extension problem of
fragmented maps.

e-mail: maslenizza.ua@gmail.com

BIFURCATION OF CYCLES IN PARABOLIC SYSTEMS OF
DIFFERENTIAL EQUATIONS WITH WEAK DIFFUSION
Ivan Klevchuk
Yurii Fed’kovych Chernivtsi National University, Ukraine

Consider the equation [1, 2]

0%u

u . . . . _
o = Wwou +ell(y+ 26)@ + (a+if)u| + (do +ico)u*nm (1)

with periodic boundary condition
u(t,z + 2m) = u(t, ), (2)
where ¢ is a small positive parameter.

Theorem 1. Ifwy >0, a >0, v > 0, dy < 0 and the condition o >
yn? is satisfied for some n € Z. Then for some g > 0, 0 < € < g,
the periodic on t solutions

Up = Un(t, 1) = Ver, exp(i(xa(e)t + nx)) + O(e)
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of the boundary value problem (1), (2) exists. Here

=/ (@ = n?y) [do| T,

Xn(€) =wo+eb+ 5007",% — eon?,

n € 7.
These solutions are exponentially orbitally stable if and only if the
condition

(dor2 —vE*)2 (V2 k2 +0% k2 —2ydor? —4~*n® —20cor?) > 4v*n?(cor2 —6k?)?

is satisfied for all k € Z\{0}.

Consider the equation of spin combustion
82§ 8§ e\ 1 03¢
(3)

where ¢ is a small positive parameter, o > 0. There exist the travel-

2
ing waves &, (t,z) = /1 — n—Q cos(t + nx) + O(e) of the problem (3),
o

2

where n € Z, n?> < ¢®>. The traveling waves &,(t,z) are exponen-

tially orbitally stable if and only if the conditions n? < 5 (2@ +1) are
fulfilled.

Consider the Brusselator equations with weak diffusion

8U1 62u1
5 = A— (B +1)uy + uduy + adlﬁ,

82’1L2

8U1 2
- B do—2
Ul — uju + edy 072

ot
with periodic boundary conditions

ui(t,z +2m) = uy(t,x), wu2(t,x+2m) = ua(t, ),

where B =1+ A%2+¢,d; >0, dy > 0, ¢ is a small positive parameter.
If A > 0 and the condition 1 > (d; + d2)n? is satisfied for some
n € Z, then for some €9 > 0, 0 < € < ¢, the periodic on ¢ solutions
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uy + tug = /erpexp(i(At + nz)) + O(g) of the Brusselator model
442
exists. Here 12 = 219 (1= (di + d2)n?), n € Z.
Let R" be n-dimensional space with the norm |u| = \/u? + ... + u2,
C = C[—A, 0] be the space of functions, continuous on [—A, 0] with

values in R™ with the norm ||¢|| = sup |¢(¥)|. We denote by wuy
<9<0

the element of space C defined by function uy(9,z) = u(t + 9, ),
—A <9 <0.
We consider a parabolic system with delay and weak diffusion

2

O DT Lt flues) @
with periodic condition (2). Here € is a small positive parameter,
u € R" L(e) : C — R™ is a continuous linear operator, f : C X
0,20) = B™, f(p,e) = O(|¢|?) as o]l — 0, the operator /(<) is
continuous in € and four times continuously differentiable in . Let us
assume that the zero solution of (4) for € = 0 is asymptotically stable.
The existence and stability of an arbitrarily large finite number of
cycles for the equation (4) were considered in [2].

References

[1] Klevchuk L.I. Ezistence of countably many cycles in hyperbolic systems
of differential equations with transformed argument, J. Math. Sci. 215:3
(2016), 341-349.

[2] Klevchuk LI Bifurcation of self-excited vibrations for parabolic systems
with retarded argument and weak diffusion, J. Math. Sci. 226:3 (2017),
285-295.

e-mail: i.klevchuk@chnu.edu.ua

R-SPACES AND UNIFORM LIMITS OF SEQUENCES OF FUNCTIONS
Mykhaylo Lukan
Yurii Fed’kovych Chernivtsi National University, Ukraine

A metric space (Y, d) is said to be an R-space, if for every € > 0
there exists a continuous map 7. : Y X Y — Y with the following
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properties:

for all y,z € Y.

Every convex subset Y of a normed space (Z, || - ||) equipped with
the metric induced from (Z, || - ||) is an R-space, where the map r; is
defined as

_ et E/ly=zD-(y=2), lly—=zl>e,
re(y, 2) = { Y otherwise.

Let X and Y be topological spaces. A map f: X — Y is a Baire-
one map, if there is a sequence (f,,)5 ; of continuous maps between X
and Y such that lim,_,~ frn(xz) = f(x) for every z € X. The collection
of all Baire-one maps between X and Y is denoted by B1(X,Y).

It is well-known [1] that the uniform limit of a sequence of Baire-
one maps f, : X — R belongs to the first Baire class. Since the uni-
form limit of a sequence of continuous maps f, : X — Y is a continu-
ous map for any metric space Y, it is natural to ask whether the similar
fact is true for Baire-one maps. It was proved in [2] that there exist a
subset of Y’ C R? and a sequence of Baire-one functions f,, : [0,1] = Y
which converges uniformly to a function f ¢ B1([0,1],Y). However,
R-spaces are favorable range spaces for the problem on uniform limit
of Baire-one functions.

Theorem 1. Let X be a topological space, (Y, d) be a metric R-space.
Then the class B1(X,Y) is closed under uniform limits.

A result in the same direction was proved in [2].

Theorem 2. Let X be a topological space, (Y,d) be a metric path-
connected and locally path-connected space. Then the class B1(X,Y)
1s closed under uniform limits.

Therefore, it is actual to find relations between R-spaces and path-
connected locally path-connected spaces.

Theorem 3. FEvery path-connected R-space is locally path-connected.
Theorem 4. The unit circle S' = {z € C: |z| = 1} is an R-space.

Question 1. Is Hawaiian Earring an R-space?
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CAUCHY COMPLETENESS FOR METRIC SPACES AND ENRICHED
CATEGORIES
Volodymyr Lyubashenko
Institute of Mathematics of National Academy of Sciences, Kyiv,
Ukraine

We introduce the notion of a category enriched in a monoidal cat-
egory [1] via the example of metric spaces. Generalized metric spaces
of Lawvere [2] are discussed in detail. For them Cauchy completeness
(in the sense of Lawvere [2]) is equivalent to the property that every
fundamental sequence converges to at least one point. For ordinary
categories (enriched in Set) Cauchy completeness is equivalent to the
property that every idempotent splits. Denote by Ab the monoidal
category of abelian groups. An Ab-category is Cauchy complete iff
it admits finite direct sums and every idempotent splits. Thus, the
notion of completeness relates analysis and algebra.
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HOMOTOPY PROPERTIES OF SPACES OF SMOOTH FUNCTIONS ON
SURFACES
Sergiy Maksymenko
Institute of Mathematics of National Academy of Sciences, Ukraine

Let M be a smooth (C*°) connected compact surface without
boundary. Consider the action of the group of C*° diffeomorphisms
D(M) on the space C*>°(M) of smooth functions on M by the rule:
the result of the right action of h € D(M) on f € C*®°(M) is the
composition f o h. Then for each f € C°°(M) one can define its
stabilizer

S(f)={h e DM) | foh=f},
and the orbit
O(f) ={foh|heD(M)}.

Endow D(M) and C*(M) with C* Whitney topologies. Then these
topologies yield certain topologies on the corresponding stabilizes and
orbits of smooth functions f € C°°(M). Denote by S;q(f) the identity
path component of S(f), and by O¢(f) the path component of O(f)
containing f.

The aim these lectures is to describe the homotopy types of the
connected components of S(f) and O(f) for the case when f is a
Morse function.

Let f: M — R be a C* Morse function. Then the following
satements hold.

1. Suppose f has at least one saddle critical point. Then

e S;a(f) is contractible;

e there exists a free action of a finite group G on a k-torus
Tk = S' x ... x S such that O¢(f) is homotopy equiva-
~—_—

lent to the quotient T%/G.
2. Otherwise, when f has no saddles,

e S;4(f) is homotopy equivalent to the circle;
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e there exists a free action of a finite group G on some T*
such that Of(f) is homotopy equivalent to SO(3) x T*/G.

We will also describe the geometrical meaning of the group G, the
number k£ and precise algebraic structure of the fundamental group
71Oy (f) for the case when M is orientable and disinct from S2.

In fact, the obtained results also hold for a more general class

maps f from compact surfaces (possibly with boundary) to R or to
the circle S*.
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ON VARIANTS OF THE EXTENDED BICYCLIC SEMIGROUP
Kateryna Maksymyk and Oleg Gutik
ITvan Franko National University of Lviv, Ukraine

We shall follow the terminology of [3, 10]. In our report all spaces
are assumed to be Hausdorff.

A (semi)topological semigroup is a topological space with a (sepa-
rately) continuous semigroup operation. A topology 7 on a semigroup
S is called:

e shift-continuous if (S, 7) is a semitopological semigroup;
e semigroup if (S, 7) is a topological semigroup.

The bicyclic semigroup (or the bicyclic monoid) € (p,q) is the
semigroup with the identity 1 generated by two elements p and gq
subject only to the condition pg = 1. The bicyclic monoid € (p, q) is
a combinatorial bisimple F-inverse semigroup and it plays an impor-
tant role in the algebraic theory of semigroups and in the theory of
topological semigroups.

The bicyclic semigroup admits only the discrete semigroup topol-
ogy and if a topological semigroup S contains it as a dense subsemi-
group then % (p,q) is an open subset of S [4]. Bertman and West in
[1] extend this result for the case of Hausdorff semitopological semi-
groups. Amazing dichotomy for the bicyclic monoid with adjoined
zero €° = €(p,q) U {0} was proved in [7]: every Hausdorff locally
compact semitopological bicyclic semigroup with adjoined zero €° is
either compact or discrete.

An interassociate of a semigroup (S, -) is a semigroup (.5, *) such
that for all a,b,c € S, a-(bxc)=(a-b)*xcand ax*(b-c) = (axb)-c.
This definition of interassociativity was studied extensively in 1996
by Boyd, Gould, and Nelson in [2]. Certain classes of semigroups
are known to give rise to interassociates with various properties. For
example, it is very easy to show that if S is a monoid, every interasso-
ciate must satisfy the condition a xb = a - c¢- b for some fixed element
¢ € S (see [2]). This type of interassociate was called a variant by
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Hickey [9]. A general theory of variants has been developed by a num-
ber of authors. In the paper [6] the bicyclic semigroup % (p, ¢) and its
interassociates (€ (p, q), *m,n) are investigated.

By Z we denote the sets of all integers. On the Cartesian product
67, = 7 x 7 we define the semigroup operation as follows:

[ (a=b+eca), if b<c
(a,b) (C,d)—{ (a,d+b—c), if b>c,

for a,b,c,d € Z. The set €z with such defined operation is called the
extended bicyclic semigroup [11]. In the paper [5] algebraic properties
of 67 were described and it was proved therein that every non-trivial
congruence € on the semigroup %7 is a group congruence, and more-
over the quotient semigroup %7/¢ is isomorphic to a cyclic group. Also
it was shown that the semigroup %7 as a Hausdorff semitopological
semigroup admits only the discrete topology and the closure cly (47)
of the semigroup %7 in a topological semigroup 1" was studied.

In the paper [8] we studied semitopological interassociates

(€ (P, @) *m.n)

of the bicyclic monoid & (p, q) for arbitrary non-negative integers m
and n. In particular, we showed that for arbitrary non-negative inte-
gers m, n and every Hausdorff topology 7 on €, such that (€, ,, )
is a semitopological semigroup, is discrete. Also, we proved that if an
interassociate of the bicyclic monoid %, is a dense subsemigroup of
a Hausdorff semitopological semigroup (5,-) and I = S\ €npn # @
then I is a two-sided ideal of the semigroup S and show that for
arbitrary non-negative integers m, n, any Hausdorff locally compact
semitopological semigroup €y ,, (65, = GmnU{0}) is either discrete
or compact.

We describe the group Aut (47) of automorphisms of the extended
bicyclic semigroup ¢7 and study a variant 6,"" = (%7, *m,,) of the
extended bicycle semigroup €7, where m,n € Z, which is defined by
the formula

(a,b) *mn (c,d) = (a,b) - (m,n) - (c,d).

We prove that Aut (47) is isomorphic to the additive group of in-
tegers, the extended bicyclic semigroup %67 and every its variant are
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not finitely generated, describe the subset of idempotents E(%,"")
and Green’s relations on the semigroup 4", and show that any two
variants of the extended bicyclic semigroup %7 are isomorphic. At the
end we discuss shift-continuous Hausdorff topologies on the variant
ng,o' In particular, we prove that if 7 is a Hausdorff shift-continuous
topology on ‘52’0 then each of inequalities a > 0 or b > 0 implies that
(a,b) is an isolated point of (%2’0,7') and constructe an example a
Hausdorff semigroup topology 7" on the semigroup ‘KZO ¥ such that all

its points with the properties ab < 0 and a + b < 0 are not isolated in
(‘50’0 7'*).
7

References

[1] M. O. Bertman, T. T. West, Conditionally compact bicyclic semitopo-
logical semigroups, Proc. Roy. Irish Acad. A76 (1976), 219-226.

[2] S. J. Boyd, M. Gould, and A. Nelson, Interassociativity of semigroups,
Misra, P. R. (ed.) et al., Proceedings of the Tennessee Topology Con-
ference, Nashville, TN, USA, June 10-11, 1996. Singapore, World Sci-
entific, (1997), pp. 33-51.

[3] A. H. Clifford, G. B. Preston, The algebraic theory of semigroups, Vols.
I and II, Amer. Math. Soc. Surveys 7, Providence, R.I., 1961 and 1967.

[4] C.Eberhart, J. Selden, On the closure of the bicyclic semigroup, Trans.
Amer. Math. Soc. 144 (1969), 115-126.

[5] I. R. Fihel, O. V. Gutik, On the closure of the extended bicyclic semi-
group, Carpathian Math. Publ. 8 (2011), 131-157.

[6] B. N. Givens, A. Rosin, K. Linton, Interassociates of the bicyclic semi-
group, Semigroup Forum 94 (2017), 104-122.

[7] O. Gutik, On the dichotomy of a locally compact semitopological bi-
cyclic monoid with adjoined zero, Visn. Lviv. Univ., Ser. Mekh.-Mat.
80 (2015), 33-41.

[8] O. Gutik, K. Maksymyk, On semitopological interassociates of the bi-
cyclic monoid, Visn. Lviv. Univ., Ser. Mekh.-Mat. 82 (2016), 98-108.

[9] J. B. Hickey, Semigroups under a sandwich operation, Proc. Edinb.
Math. Soc., II. Ser. 26 (1983), 371-382.

[10] W. Ruppert, Compact semitopological semigroups: an intrinsic theory,
Lect. Notes Math., 1079, Springer, Berlin, 1984.

31



[11] R. J. Warne, I-bisimple semigroups, Trans. Amer. Math. Soc. 130
(1968), 367—-386.

e-mails: kate.maksymyk15@qgmail.com, oleg.gutik@Inu.edu.ua

SUPERFRACTALITY OF AN INCOMPLETE SUMS SET OF A CERTAIN
POSITIVE SERIES
Vita Markitan and Ihor Savchenko
National Pedagogical Dragomanov University, Ukraine

The achievement set (or a partial sumset) of the series

o0
Zan:a1+a2+...+an+...:Sn+(an+1+an+2+...):Sn—i—rn

n=1

is called a set

Efa,} = {:1:: x=xz(M)= Z ap, MEQN},
neMCN
and every its element — an incomplete sum of the series.

We consider a family of convergent positive normed series with
real terms defined by conditions

oo
Zdn:c1+...+c1+cQ+...+c2+...+cn+...+cn+’fn:1, (1)
~~ —

~~
al az an

n=1
where (a,,) is a nondecreasing sequence of real numbers. For a partial
case (a,) = 21, ¢, = (n+1)7,, n € N, the geometry of a series (i.e.
properties of cylindrical sets, metric relations generated by them, and
topological and metric properties of the set of all incomplete sums of
a series) are invistigated.
We consider a random variable

§= Z dngna (2)
n=1

where (&,) — sequence of independent random variables with distri-
bution:

P{fnZO}ZPOnZOy P{fnzl}:plnzoa Pon + P1n = 1. (3)
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Theorem 1. The distribution of the random variable 2, defined by
the series 1, is pure. It is purely discrete if and only if

o
M = [ maz{por, pix} > 0. (4)
k=1

In the case of discreteness of the distribution of the random variable
2 its point spectrum consists of a point

00
Lo = Z O‘:Ldna Pazxn > Pli—az]ns
n=1

and all points x which can be represented in the form:
m oo
=S ot 3 aide
n=1 n=m-+1
where ay, € {0,1}, pa,n # 0 for n < m.

By the spectrum S¢ of the distribution of a random variable § we
mean the set of growth points of its distribution function F¢(x), i.e.

Se={x:Fe(x+e)—Fe(x —e)=P{{ € (x—eg;x+e)} >0,Ve > 0}.

Lemma 2. If p;, > 0 for all i € {0,1} and all n € N, then the
spectrum S¢ of the distribution of the random variable & coincides

with the set E{d,} of all subsums (incomplete sums) of the series
(1), that is,

Sg—E{dn}E{J}:x— Zdn, M€2N}.
neM

Corollary 3. For the spectrum S¢ of the distribution of a random
variable & the following inclusion holds: S¢ C E{d,}.

Lebesgue measure zero subsets of R with the Haussdorff-Besikovich
dimension 1, are called superfractal.

Theorem 4. The set of incomplete sums (1) is a superfractal set.
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Corollary 5. The spectrum S¢ of the distribution of a random vari-
able £ is a superfractal set.

Theorem 6. In the case of continuity (M = 0), the distribution of
the random wvariable € is a singular Cantor type distribution with a
superfractal spectrum.

An autoconvolution of the distribution of a random wvariable £ is
the distribution of the random variable 1y = €0 + ¢@ and an s-
multiple convolution of the distribution of a random wvariable & is the
distribution of a random variable

s = €W+ 6@ 440,

where £ are independent and equally distributed random variables
each having the same distribution as &.

Lemma 7. The spectrum Sy, of the distribution of a random vari-
able s is a subset of the interval [0,s] and belongs to the union
n

[T (5-2% 4+ 1) of isometric segments of length st,, n=1,2,3, ... .
k=0

Theorem 8. In the case of the continuity of the random wvariable &
(M = 0) the distribution of the random variable s, for any natu-

ral s > 2 is a singular Cantor type distribution with a superfractal
spectrum.
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ON INVARIANT MAX-PLUS CLOSED CONVEX SETS OF IDEMPOTENT
MEASURES
Natalia Mazurenko! and Mykhailo Zarichnyi?
YWasyl Stefanyk Precarpatian National University, Ukraine
2 University of Rzeszéw, Poland

In [4], the authors defined the notion of an invariant idempotent
measure under given IFS on a complete metric space. These measures
are idempotent counterparts of the probabilistic fractals [1].

In [2], [3], the first-named author considered invariant objects un-
der given IFS on a complete ultrametric space, and obtained the con-
struction of an invariant max-plus closed convex set of idempotent
measures.

Recall that an idempotent measure on a compact Hausdorff space
X is a functional p: C(X) — R that preserves constants, the maxi-
mum operation and is weakly additive (i.e., preserves sums in which
at least one summand is a constant function) [5]. Given an arbitrary
metric space X, we denote by I(X) the set of idempotent measures of
compact support on X. A nonempty subset A C I(X) is called max-
plus convex if max{t + p,v} € A for every u,v € A and t € [—o0,0].

The aim of the talk is to obtain a counterpart for the construction
of an invariant max-plus closed convex set of idempotent measures
under given IFS on a complete metric space. For a complete metric
space X, we consider the space ccI(X) (of closed convex subsets of
idempotent measures of compact support on X) as a subspace of
C’(X) and use the weak* convergence to prove the existence of an
invariant element.
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DEVELOPMENT OF HAHN’S THEOREM ON INTERMEDIATE FUNCTION
Vasyl Melnyk and Volodymyr Maslyuchenko
Yuriy Fedkovych Chernivtsi National University, Ukraine

We call a pair of functions (g, h) a Hahn’s pair on topological space
X,if g: X >R and h: X — R are upper and lower semicontinuous
functions such that g(x) < h(z) on X. If g(x) < h(z) on X, then
(g,h) is a strict Hahn’s pair. Function f : X — R is called interme-
diate for Hahn’s pair (g,h) on X, if g(x) < f(z) < h(z) on X and
strictly intermediate, if g(x) < f(z) < h(x) whenever g(z) < h(x)
and g(z) = f(z) = h(z) when g(x) = h(x). According to Hahn-
Dieudonne-Katetov-Tong theorem [1, p. 105] T1-space X is normal iff
each Hahn’s pair (g, h) on X has an intermediate continuous function.
This theorem has a lot of analogues (see [2] and the literature given
there). Here we present some of our recent results regarding differ-
entiable intermediate function and intermediate function for Hahn’s
pair of separately semicontinuous functions.

Theorem 9. Let X be a separable Hilbert space and (g, h) be a Hahn’s
strict pair on X. Then there is a C°-function f : X — R which is
strictly intermediate for (g, h).

This result is also true for Asplund spaces and parallelepipeds in
Rn

For amap f : X xY — Z and a point (z,y) € X XY we
write f*(y) = f(x,y) = fy(z). For topological spaces X, Y and Z
we denote by C(X), C*(X) and C'(X) the spaces of continuous and
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upper or lower respectively semicontinuous functions f : X — R, by
CC(X xY), C*C*(X xY) and C'C'(X x Y) — spaces of separately
continuous and upper or lower separately semicontinuous functions
f:XxY — R, and by C(X,Y) and CC(X x Y,Z) — spaces of
continuous maps f : X — Y and separately continuous maps f :
X xY — Z, respectively.

For topological spaces X and Y the ordered pair (g, h) of functions
g€ CUCHX xY)and h € C'CH(X x Y) is called a separate Hahn'’s
pair.

Let us recall, that plus-topology C on product X x Y of two topo-
logical spaces consists of sets O C X x Y such that for each point
p = (x,y) € O there exist neighborhoods U of point x and V' of point
y in spaces X and Y, respectively, with (U x {y})U ({z} x V) C O.

Theorem 10. Let X and Y be Ti-spaces. Than each separate Hahn’s
pair (g, h) on product X XY has an intermediate separately continuous
function if and only if space Q@ = (X x Y,C) is normal.
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ON DISCONTINUITY POINTS SET OF SEPARATELY CONTINUOUS
FUNCTIONS
Volodymyr Mykhaylyuk
Yuriy Fedkovych Chernivtsi National University, Ukraine and
Jan Kochanowsk: University in Kielce, Poland

For topological spaces X and Y and a mapping f : X — Y by
D(f) we denote the discontinuity points set of f.
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We say that a subset A of the product X x Y of topological spaces
X and Y is locally projectively nowhere dense (meager), if for every
x € X there exists a neighborhood U of z in X such that the set
AU has nowhere dense (meager) projections on X and Y.

Function f : X xY — R is called separately continuous, if it
continuous with respect to each variable.

Theorem 1. Let X and Y be metrizable spaces and E C X x Y.
Then there exists a separately continuous function f : X XY — R
with D(f) = E if and only if the set E is the union of a sequence of
a F,-sets which are locally projectively meager.

Theorem 2. Let X = [[ Xs and Y = [[ Y}; be topological prod-
ses teT
ucts of families of metrizable separable spaces X and Yy respectively.

Then a set B C X XY is the discontinuiuty points set for a separately
continuous function f: X XY — R if and only if there exist at most
countable sets Sy C S and Ty C T and projectively meager Fy-set Ey

in a product Xo x Yy, where Xg = [[ Xs and Yo = [] Yi, such that
s€Sy teTy

E = pr Y(Ep) where pr: X x Y — X x Yy is the natural projection
for which pr(x,y) = (2lse,yln,).

Theorem 3. Let X, Y be Cech complete spaces, (En)22, be a
sequence of separable compact perfect projectively nowhere dense G-

sets B in X XY and B = U E,. Then there exists a separately

continuous function f: X x Y —> R such that D(f) = E.
Theorem 4. Let X, Y be Cech complete spaces, (An)5% 1, (Br)oe,
be sequences of nowhere dense compact Gs-sets A, and By, in X and

Y respectively, A = U A, and B = U By,. Then there exists a sep-

n=1

arately continuous functzon f: X xY = R such that prx D(f) = A
and pry D(f) = B.

Example 1. There exist Eberlein compacts X and Y and nowhere
dense zero sets A and B in X and Y respectively such that D(f) #
A x B for every separately continuous function f: X x Y — R.

Example 2 (CH). There exist separable Valdivia compacts X
and Y, nowhere dense separable zero sets F and F in X and Y re-
spectively such that D(f) # E x F for every separately continuous
function f: X xY — R.
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Question 1. To characterize of discontinuity points sets of sepa-
rately continuous functions on the product of two Eberlein compacts.

Question 2. Let X be a metrizable compact, Y be an Eberlein
compact and F be a projectively nowhere dense zero set in the product
X xY. Does there exist a separately continuous function f : X XY —
R with D(f)=E?
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DIMENSIONS OF HYPERSPACES AND NON-ADDITIVE MEASURES
Oleh Nykyforchyn
Vasyl Stefanyk Precarpatian National University, Ukraine
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TOPOLOGICAL INVARIANTS OF BPS STATES AND HIGGS COUPLING
MEASUREMENTS AT THE LHC
Tetiana Obikhod
Institute of Nuclear Research NAS of Ukraine

Since only the Higgs boson was discovered among the theoretically
predicted particles, the further development of physics is associated
with the study of the properties of this particle. Standard Model (SM)
has a few pressing questions:

e the baryon asymmetry of the Universe;
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e the large mass hierarchy;
e the prevalence of the Dark Matter in the Universe;
which call for physics beyond the SM.

The most promising methods for studying of new physics are the
experiments connected with the properties of the Higgs boson coupling
[1, 2]. As these experiments assume the formation of new particles
beyond SM, there is a need for a new theory. Mathematical calcula-
tions of possible observables in the framework of such theories would
be a serious help for modern physics.

One of such methods is to consider vector bundles with a four-
dimensional base and a fiber — vector space with the structure group
SU(5). As the problem of Higgs selfcoupling is connected with the
vacuum stability, it would be appropriate to consider the instanton
numbers associated with tunnel transitions between vacuum states
and with different topological quantum numbers characterizing the
BPS states. The BPS solitons in SUSY theories with codimension
four, three, two, and one are called instantons, monopoles, vortices,
and domain walls, respectively [3]. The theory has a stable domain
wall interpolating between two different vacua and the energy density
of the wall is nothing but the value of the central charge ¢, related to
the integral

o = / B0, W (S%) = [W(S2)sms o0 — W(S%)ss—oe)] »
with superpotential

A m
W == ? + 152 5
where A is the scale parameter of the SU(2) gauge theory, m = v/2)v,
S is composite operator of SU(2) group, [4]. As superpotential has
a crucial role for the properties of SUSY particles [5], it is necessary
to draw a conclusion about the importance of the BPS characteristics
connected with topological invariants such as central charge and new
particle spectra beyond the SM.
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ON NARROW OPERATORS
Mikhail Popov
Yuriy Fedkovych Chernivtsi National University, Ukraine and
Pomeranian University in Slupsk, Poland
The lectures will consist of two parts: 1) An introduction to narrow
operators; 2) Some open problems on narrow operators.
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THE SUM OF CONSECUTIVE FIBONACCI NUMBERS
Skuratovskii R. V., Rudenko D. V.
MAUP, IKIT, Ukraine

The sums of the sequential Fibonacci numbers and some other se-
quences form new sequences. We consider such task: find all the nat-

m .
ural values m > 1 such that the divisibility is fulfilled ) fx:m, where
k=1
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sequence { f,, };7°] is determined by the ratio f,11 = fo+ fa-1, n > 2,
values fi and fo - some integers that may vary. Let’s consider exam-
ples of calculations.

1) Let f1 =1 and fy = 1, so we consider the Fibonacci sequence.
In this case we get such values :

1,2, 24, 48, 72, 77, 96, 120, 144, 192, 216, 240, 288, 319, 323, 336,
360, 384, 432, 480, 576, 600, 648, 672, 720, 768, 864, 960, 1008, 1080,
1104, 1152, 1200, 1224, 1296, 1320, 1344, 1368, 1440, 1517, 1536,
1680, 1728, 1800, 1920, 1944, 2016, 2064, 2160, 2208, 2304, 2352,
2400, 2448, 2592, 2640, . ..

2) Let f; =2 and fo = 1. In that case we get such values m:

1, 3, 24, 48, 72, 96, 120, 144, 192, 216, 240, 288, 336, 360, 384, 406,
432, 480, 576, 600, 648, 672, ...
n+m
Here was used the equality: > fx = fntm+2 — 1. The following

k=1
statement takes place.

Theorem 11. The sum of any m sequential Fibonacci numbers is
multiple of then and only if the numbers fp, and fm+1—1 are multiples
of m.

Lemma 12. Let fi11, fut2, -5 frntm, 1 > 0 —m arbitrary successive
Fibonacci numbers. Then the next equality holds:

m
Z fn+k = fn+m+2 - fn+2

k=1

!
Indeed, taking into account the equality >  fr = fiio — 1, for all
k=1
natural numbers [, we will make the following transformations:

m
anJrk = fn+1 + fn+2 + ...+ fn+m =
k=1

=i+t fot ot fogm) (it ot .+ fu)=

42



n+m n

=Y =D fe = (famra = 1) = (farz = 1) = fatm2 = fato:
k=1 k=1

The criterion of divisibility of the sum of successive Fibonacci
numbers by the number terms has the following form:

Theorem 13. The sum of any m sequential Fibonacci numbers is
multiple of m if and only if the numbers f.,, and fi+1—1 are multiples
of m.

We denote by T'(m) the period of mentioned above sums of con-
secutive Fibonacci numbers reduced by the modulo m.
Statement 1. If(%) = 1 then the period T'(p) divides p—1 if(fO
then T'(p) divides 2p + 2.

)= 1

Theorem 14. If m = pq, where p, q € P then the period is equal to
T(p)T (q) viz T (pg) = lem(T'(p), T (q))-

Example 15. The period by a composite module 33 is equal to 33
according to formula T'(33) = LCM (8, 10) = 40, where 8 = T'(3),
9="T(11).

Other periods are the following: T'(72) =T(9-8) =T(9) - T(8) =
lem (8, 18) = 24 - 3. The period by the composite module m = 2 - 31
is the product 7'(2) = 3 by T'(31) = 30. In other words T (62) =
T (2) T(31) = 30.

Example 16. The period by a composite module 38 is equal to ac-
cording to T(38) =T(2-19) =lem (3, 18) =18

Theorem 17. If m = p? then the period of the sums T(p) is equal to
pT(p).

Example 18. Take into account that T (7) = 16, and as an example
we check that T (72) =T (7)7. Indeed due calculations we obtain the
following

T(49)=112=27=T(7) =T (7)7=(16)-7= (2) 7.

43



References

[1] Vorobiev N. Fibonacci numbers. M .: Nauka, 1978. 144 p.

[2] Stakhov A.P. Metal proportions are the new mathematical con-
stants of nature. ” Academy of Trinitarianism”, M., El. No. 77-
6567, publ.14748, 22.03.2008.

[3] Novosad M.V, Dykcha I.A. Luke’s numbers. Scientific herald of
Chernivtsi University. 2009. 446. pp. 11-15

[4] R.V. Skuratovskii, Rudenko D. V. The sum of consecutive F'i-
bonacci numbers Scientific journal FMO, (2018), v.1, p. 305-310.

e-mail: ruslcomp@mail.ru

NUMERICAL INDEX WITH RESPECT TO AN OPERATOR
Alicia Quero de la Rosa
Universidad de Granada, Spain

The concept of numerical index was introduced by G. Lumer in
1968 in the context of the study and the classification of operator
algebras.

This is a constant of a Banach space relating the behaviour of the
numerical range with that of the usual norm on the Banach algebra of
all bounded linear operators on the space. Recently, Ardalani intro-
duced new concepts of numerical range and numerical radius of one
operator with respect to another one, which generalize in a natural
way the classical concepts of numerical range and numerical radius.
The aim of this talk is to study basic properties of these new con-
cepts, present some examples and provide results on the stability of
the numerical index with respect to an operator under some natu-
ral operations such as absolute sums or ¢y, #1 and £ -sums and on
computing the numerical index with respect to an operator of some
vector-valued function spaces.
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THE BisHor-PHELPS-BOLLOBAS PROPERTY
AND SOME RELATED TOPICS

Oscar Roldan Blay
Universitat de Valencia, Spain

The origin of the study of norm-attaining operators between Ba-
nach Spaces is the Bishop-Phelps Theorem [2] about the density of
norm-attaining functionals. In 1961, E. Bishop and R. R. Phelps
proved that given any Banach Space X over the field K of real or
complex numbers, the set of functionals over X (this is, bounded lin-
ear operators from X to K) is dense in the topological dual of X,
denoted by X*. In 1963, J. Lindenstrauss [5] studied whether the
result remained true when we consider norm-attaining operators be-
tween two Banach Spaces X and Y, instead of functionals, and gave
a negative answer to the question. As of that moment, many papers
have been published worldwide studying this topic.

In 1970, B. Bollobés [3] gave a refined version of Bishop-Phelps
Theorem, with which one can approximate at the same time a func-
tional and a vector in which it almost attains its norm by a norm-
attaining functional and a vector in which it attains its norm. This is
the starting point of the Bishop-Phelps-Bollobas property, introduced
in 2008 by M. D. Acosta, R. M. Aron, D. Garcia and M. Maestre [1].
The Bishop-Phelps-Bollobés property (the BPBp for short) is just an
adaptation of Bollobés result to operators between Banach Spaces in-
stead of functionals. Clearly, it is a stronger property than the density
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of norm-attaining operators, and actually, it is known that they are
not equivalent. Ever since the property was introduced, there have
been numerous papers written studying this topic and similar ones.
In 2013, A. J. Guirao and O. Kozhushkina [4] adapted the BPBp for
operators that attain their numerical radius instead of their norm,
and that started another field of study in Functional Analysis. In this
talk we will see some of the main results that have been found about
these topics.
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AN ANALOG OF THE SCHWARZ LEMMA
FOR REGULAR HOMEOMORPHISMS
Ruslan Salimov and Mariia Stefanchuk
Institute of Mathematics National Academy of Sciences of Ukraine
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Let B={z € C:|z| <1} and f: B — C be a regular homeomor-
phism of Sobolev class VVlzcl For any p > 1, the quantity

_ iy _ | fo(re™)|P
Dy(z) = Dp(re™) = v Tp(re?)
is called p-angular dilatation of f at a point z € B, z # 0, with respect
to the origin.

Let B, ={z€C:|z| <r}, % ={2€C: |zl =r}. Forp>1,
denote .

p
1 1
br) = 5 [ DT
Yr

Theorem 1. Let f: B — B be a reqular homeomorphism of Sobolev
class WI})CI possessing Lusin’s (N)-property, and f(0) = 0. Suppose
that there exists k such that for p > 2,

p—1

1 1
. . p—1 <
llgélf ) // Dy~ (z) dzdy <k <oo.

B
Then
1
iminf LC < ¢ kit < o,
z—0 ’Z’

where ¢, s a positive constant depending only on p.

Theorem 2. Let f: B — B be a reqular homeomorphism of Sobolev
class Wb possessing Lusin’s (N)-property and normalized by f(0) =

loc

0. Suppose that p > 2 and there exists ko such that

1

dt
ko = li p2 [
o= timsup -2 [ O
Then )
| f(2)]

<(p-2TTk
= 0 -

lim inf
z—0 |z\
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A GENTLE INTRODUCTION TO FORCING
Olga Sipacheva
Moscow State University, Russian Federation
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BOREL SETS IN TOPOLOGICAL SPACES
Jiri Spurny
Charles University in Prague, Czech Republic

We present a construction of the Borel hierarchy in general topo-
logical spaces and its relation to Baire hierarchy. We define mappings
of Borel class «, prove the validity of the Lebesgue—Hausdorff-Banach
characterization for them and show their relation to Baire classes of
mappings on compact spaces. We prove a key theorem on invariance
of Borel sets with respect to perfect mappings. The obtained results
are used for studying Baire and Borel order of compact spaces. We
present several examples showing some natural limits of our results
in non-compact spaces. We also include applications of the obtained
results to the theory of compact convex sets.
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THE FINDING OF THE NUMBER OF THE NONISOMORFIC
(n, m)-GRAPHS
Polina Stegantseva and A. Artemenko
Zaporizhzhya National University, Ukraine
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The simple graph G with n vertices and m edges is called (n, m)-
graph. Let T'(n,m) is the number of the nonisomorfic (n, m)-graph.
In [3] we can find T'(n,m) for n = 1,18 and in [1] we can find the
sequence A008406 for n = 1,20. In [2] the formula for the generating
function of the number of the simple graphs has been obtained. This
work deals with the simple way of the calculation of the some number
T(n,m) for n = 21, 26.

Some properties:

1) Let is the set of all nonisomorfic (n,m)-graphs. Then the
subset, which is equivalent to M, exists in the set of all nonisomorfic
(n + 1,m)-graphs. Arbitrary graph of the subset differs from any
graph of the set by one isolated vertex.

2) If the graph with the vector of the degrees (1,1,,1) exists in
the set of all nonisomorfic (n, m)-graphs, then n = 2m.

3) Let k is the number of all nonisomorfic (2m, m)-graphs. Then
the number of all nonisomorfic (n, m)-graphs equals k for all n > 2m.

Definition 1. Let (s, $2, ..., $p) is the vector of the degrees of (n, m)-
graph G. Let for any i takes place s; > 2 and (v;,v;) is one of the
edges. We add new isolated vertex v,11. We move off the edge (v;, v;)
and we add the edge (vj,vn+1). Then the degree of the vertex v; is
reduced by 1 and the degree of the new vertex is 1. In this case we
call the transformation of the graph G P-transformation.

Using P-transformation we can transform (2m — k, m)-graph for
k > 0 into (2m, m)-graph. The following formulas have been proved:

T(2m,m)=T2m,1)+T2m—1,m),m > 1

)

T(2m,m) =T(2m,2) +T(2m —2,m),m > 2

T(2m,m) =T(2m,3)+T(2m — 3, m),m > 3

T(2m,m)=T2m,4) +T(2m —4,m)+1,m >5

T(2m,m)=T2m,5) +T(2m —5m)+4,m>7

T(2m,m) =T(2m,6) +T(2m —6,m) +4,m > 9
);

) =
) =
We calculate T(21,11), T(22,11), T(21,12), T(22,12), T(23,12),
T(24,12), T(21,13), T(22,13), T(23,13), T'(24, 13), T(25, 13), T(26, 13).
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GJMS OPERATOR ON EINSTEIN RIEMANNIAN MANIFOLD
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ON TOPOLOGICAL ASPECTS OF THE DIGITAL IMAGE SEGMENTATION
Iryna Yurchuk and Maksym Pasichnyk
National Aviation University, Ukraine

Introduction. Nowdays the data mining needs new effective
methods of data proccessing caused by the growth of data flow. The
image segmentation is usufull part of a machine vision, an object de-
tection, the recognition tasks and etc. The most of image segmenta-
tion methods are based on statistics methods that in fact lead to some
disadvantages. For example, K-means algorithm requires to know the
quantity of clusters in advance that restricts its application.

The authors propose the image segmentation algorithm based on
the persistent homologies as the effective mode of topological data
analysis.

Background. Terms of computational topology are formulated,
see [1, 3, 4]. Given S C Y and € € R, let G¢ = {S,E.} be e
neighborhood graph on S, where E. = {(u,v) : d(u,v) < e,u #
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v € S}. A clique in a graph is the subset of vertices that induces a
complete subgraph. The clique complex has the maximal cliques of a
graph as its maximal simplices.

The Vietoris-Rips complex C¢ is the clique complex of e-neighbor-
hood graph.

A filtration of a space X is a nested sequence of subspaces: () C
XiC...CX,=X.

For € < €, it is true that C. C Cu. The set {C, }¥_, of Vietoris-
Rips complexes is the filtration for any finite set {€1, €a, ..., €x}, where
€ < €5, 1< 7.

Let H; = H,(C,), where H, be p—th homology, and f;;’j : H; —
H%,i<j,beamap. N N

The p—th persistent homology Hp? is Imfp? for 0 < i < j <
k+1. On other words, Hy/ = ZIi7 J(B) N Zf,), where Z;; is p—cycles
of C¢, and By is p—boundaries of C¢;. There is a method of their
calculation based on the matrices algebra, the persistence barcode
and the persistence diagrams (see [4]).

It’s known that 8y = rank HS’J is the amount of connected compo-
nents of the space. For the digital image segmentation, it is the same
as the quantity of clusters.

Practice. Let consider a digital image D as a set of points M in
R5. Denote by L the length of D and W the width of D. Every pixel
P has two parameters of the plane location (z and y) and three color
components (for example, RGB). The digital image segmentation al-
gorithm based on a persistent homology is following:

1. Let P(z,y,r,g,b) be a pixel of D. Then the coordinates of

every P are normalized and the following is obtained: z’ =
L !/ y / r !/ g /)
, Y = , g = — and b =

max{L, W} max{L, W} 255 255
b

255 where 2’y 1" ¢’ b€ [0;1]. The set M is transformed into

the new set M’ in R®;

2. Fix a finite set {e1, €2,..., €} such that ¢ < ¢; for ¢ < j. Con-
struct the filtration of Vietoris-Rips complexes {C’Ei}f:1 on the
even grid of the set M’;

3. Construct the matrices of persistent homologies of {C,}%_;;
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4. Calculate the rank of Smith normal form of persistent homolo-
gies matrices. This number is the quantity of segmentation clus-
ters.

The image segmentation algorithm based on the persistent ho-
mologies is implemented in Cf (.NET4.5) and the results are com-
pared with the K-means algorithm.

Conclusions. After testing on real images it becomes obvious
that the digital image segmentation algorithm based on the persistent
homologies is more effective than K-means algorithm and not sensitive
even to high noise levels.
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A metric space F is said to be expand-contract plastic (or briefly
an EC-space) if every non-expansive bijection F': E — F is an isom-
etry. The EC-plasticity of totaly bounded metric spaces was estab-
lished in [4, Theorem 1.1]. In particular, the unit ball or even every
bounded set of any finite-dimensional Banach space is EC-plastic.
However, the question about plasticity of the unit ball of an arbitrary
Banach space is open. In [1, Theorem 2.6] the mentioned property
is proved for the unit balls of strictly convex Banach spaces. So, the
unit balls of the spaces L, with 1 < p < oo as well as of all Hilbert
spaces are plastic. On the other hand, there is an example of bounded
closed convex set in an infinite-dimensional Hilbert space that is not
EC-space [1, Example 2.7]. As we can see, the question about plastic-
ity in infinite-dimensional spaces is much more difficult. We answered
this question in positive for the unit ball of the space ¢, which is not
strictly convex.

Theorem 1 ([2, Theorem 1]). The unit ball of {1, is an EC-space.

Another interesting question connected with the previous one is
about unit balls of two different Banach spaces X and Y. If one
consider a non-expansive bijection F': Bx — By, for which spaces
X and Y the mapping F appears to be an isometry? In this field
we received some generalization. For cases when the unit ball of the
space Y is known to be EC-plastic, we get that X may be an arbitrary
space. To be more exact, the following theorems hold.

Theorem 2 ([5, Theorem 3.1]). Let F': Bx — By be a bijective

non-expansive map. If Y is strictly convex, then F is an isometry.

Theorem 3 ([5, Theorem 3.5|). Let F': Bx — By, be a bijective
non-expansive map. Then F is an isometry.

Theorem 4 ([5, Theorem 3.8]). LetY be a finite-dimensional Banach
space, F': Bx — By be a bijective non-expansive map. Then F is an
1sometry.

We have also done one more step in solving the problem with the
unit balls of two different spaces.
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Theorem 5 ([3, Theorem 3.1]). Let X be a Banach space, Z;,i € 1
be a fixed collection of strictly convex Banach spaces, Z be the {1-

sum of the collection Z;,1 € I, and F': Bx — Bz be a non-expansive

bijection. Then F' s an isometry.

As a consequence, we get the EC- plasticity of the unit ball of the

space Z.
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